
A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

 A Linux Implementation of a Differentiated Services Router

Torsten Braun, Hans Joachim Einsiedler1, Matthias Scheidegger, Günther Stattenberger
Institute of Computer Science and Applied Mathematics, University of Berne

Email: [braun|mscheid|stattenb]@iam.unibe.ch
1now: T-Nova Deutsche Telekom Innovationsgesellschaft mbH, Berkom, Email: einsiedler@berkom.de

Karl Jonas, Heinrich J. Stüttgen

Computer & Communications Network Product Development Laboratories Heidelberg, NEC Europe Ltd.
Email: [karl.jonas|stuttgen]@ccrle.nec.de

ABSTRACT

The Internet Engineering Task Force (IETF) is
currently working on the development of
Differentiated Services (DiffServ). DiffServ seems
to be a promising technology for next-generation
IP networks supporting Quality-of-Services (QoS).
Emerging applications such as IP telephony and
time-critical business applications can benefit
significantly from the DiffServ approach since the
current Internet often can not provide the required
QoS.

This paper describes an implementation of
Differentiated Services for Linux routers and end
systems. The implementation is based on the
Linux traffic control package and is, therefore,
very flexible. It can be used in different network
environments as first-hop, boundary or interior
router for Differentiated Services. In addition to
the implementation architecture, the paper
describes performance results demonstrating the
usefulness of the DiffServ concept in general and
the implementation in particular.

KEYWORDS:

QUALITY-OF-SERVICE (QOS), INTERNET PROTOCOL (IP), DIFFERENTIATED SERVICES
(DIIFSERV), ASSURED SERVICE, ASSURED FORWARDING (AF), PREMIUM SERVICE,
EXPEDITED FORWARDING (EF), LINUX

A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

1. DIFFERENTIATED SERVICES

For scalable QoS support in the Internet, the IETF
is developing the Differentiated Services
Architecture [2]. The IETF focuses on two
services - Assured Service and Premium Service
[3]. For discrimination of these different services
from the currently used Best Effort service, the
IETF proposed a special byte in the Internet
Protocol (IP) header, the so-called Differentiated
Services Byte (DiffServ byte). This byte contains
6 bits called DiffServ code-point (DSCP). DSCPs
describe the so-called per-hop behavior (PHB),
which is the externally observable forwarding
behavior applied to a DiffServ flow at DiffServ
capable nodes [5].
Premium Service (Expedited Forwarding, EF [7])
is understood as a Virtual Leased Line service
where users cannot exceed the bandwidth.
Premium Service is designed in order to achieve
low queuing delay, e.g. for real-time applications
like IP telephony. Assured Service (Assured
Forwarding, AF [8]) assures the customer a certain
amount of bandwidth. The bandwidth cannot be
guaranteed but packets are labeled with higher
priority for transmission over the network. Four
Assured Service classes have been defined [6] with
three dropping precedence levels (low, medium
and high) each. The dropping precedence levels
might be increased but the packet should stay in
the same class. The different classes are handled
independently from each other, but packets of one
micro-flow are mapped to the same class.
At a DiffServ node an incoming packet is first
classified by a classifier, which identifies the
service to be supported. A Behavior Aggregate
(BA) classifier selects packets based on the
DiffServ code-points only. The Multi-Field (MF)
classifier looks also into other IP or higher layer
header fields. The classifier forwards the packet to
the service-dependent traffic conditioner which
may include a meter, a marker, a shaper and a
dropper [10]. With these components several
kinds of routers can be built. A Differentiated
Services network requires four different kinds of
routers:
• The first hop router is placed adjacent to the

sender host. Packets are classified (BA or
MF) and marked per flow according to a user
profile. Service handlers have to ensure

conformance of the flows with the predefined
profiles.

• Egress routers are located at the border
between two DiffServ domains such as
Internet Service Providers (ISPs). They have
to make sure that the leaving traffic behaves
according to the Service Level Agreement
(SLA) negotiated with the adjacent domain.

• Ingress routers are also located at the entry
points of a DiffServ domain and perform
BA/MF classification. Their policing
mechanisms restrict the incoming traffic
according to the SLAs. Very often, routers at
the boundary of a domain (boundary router)
work as ingress routers for incoming traffic
and as egress routers for outgoing traffic.

• Interior routers within DiffServ domains are
responsible for forwarding according to the
service requirements of the packets. They
have to give higher priority to Differentiated
Services packets than to Best Effort ones.
Interior routers consider aggregated
Differentiated Service flows only.

2. DIFFSERV ROUTER IMPLEMENTA-

TION ARCHITECTURE

Figure 1 shows the developed implementation
architecture of our DiffServ boundary router. After
classification, the traffic is processed by the
corresponding service handlers such as Premium
Service shapers, policers, or Assured Service
dropping precedence handlers and then forwarded
to the associated queuing systems. For Premium
Service traffic, network control traffic and Best
Effort traffic, the queuing system can be a simple
FIFO queue, while Random Early Detection
(RED) is proposed for Assured Service. An output
scheduling mechanism such as Priority Scheduling
or Weighted Fair Queuing is required for selection
of packets to be sent via the outgoing interface.
After classification at interior routers the packets
are immediately directed to the outgoing queuing
systems. While in a first hop router and in an
ingress router each connected customer needs a
BA/MF classifier and a conditioner, we only have
BA classification in an egress router. There is only
the need for one classifier and one conditioner per
class.

A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

Classification

Precedence
Handler AF1

Premium Ser-
vice Handler

Best-Effort

Network
Control Traffic

RED

FIFO

Weighted Fair
Queuing or
Priority Scheduling

Queuing Systems

Precedence
Handler AF2

Precedence
Handler AF3

Precedence
Handler AF4

different SLAs

Figure 1: Implementation Architecture of a DiffServ boundary router

source
address

source
address
mask

source
port

destina-
tion

address

destina-
tion

address
mask

destina-
tion
port

proto-
col

input
DSCP

output
DSCP

bandwidth
AF

medium
dropping

precedence

bandwidth
EF / AF

low
dropping

precedence

32 bits 32 bits 16 bits 32 bits 32 bits 16 bits 8 bits 8 bits 8 bits 32 bits 32 bits

Figure 2: Structure of the DiffServ table

A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

A DiffServ profile can be implemented based on
the IP header fields such as the IP version, source
/destination address including network masks,
protocol type, source/destination port and DSCP.
In addition to the IP header fields, a profile table
(Figure 2) includes the parameters such as
bandwidth values. The profile influences marking
and dropping packets within DiffServ nodes. A
Premium Service (EF) profile requires a peak
bandwidth value which is used to compute the
amount of tokens that are left for the service. For
Assured Service (AF) bandwidth values for low
and medium dropping precedence are necessary.
Figure 3 shows the logical structure of an egress
router or a first hop router for Premium Service.
After classification, the packets are stored in a
queue until tokens become available. Then, the
packet can be sent to the outgoing queue. In the
case that more packets arrive in the buffer than
packets can be sent, packets must be discarded.
In egress routers, it is expected that the senders
(or the upstream routers) will send with the
agreed rate so that the queue can be kept small
[13]. In first hop routers, the buffers have to be
bigger because of bursty traffic from non-
DiffServ clients.
In a Premium Service ingress router, the packets
are discarded as shown in Figure 4. There, we
have no buffer (queue) in the traffic conditioner.
The arriving packets are stored in the output
queuing system, if tokens are available.
Otherwise, they are discarded immediately after
classification.
Another important difference between the
various DiffServ router types is that in an egress
router, we usually have BA classification only
while first hop or ingress routers have BA/MF
classification because they are connected to
external customers, which have negotiated SLAs
with the provider of the DiffServ domain [11].

Figure 5 shows the architecture of the Assured
Service Handler which is an implementation of
the three color marking concept [1]. Token
buckets support the decision, whether the
dropping precedence of a packet must be
modified before forwarding to the Assured
Service queuing system. The High Dropping
Precedence packets are handled as Best Effort
traffic but are still marked as Assured Service
traffic. The restriction of the high dropping
precedence bandwidth will be done in the
outgoing queuing system. This has to provide
some kind of policing functionality. The Assured
Service queuing mechanism is an extended RED
mechanism [9] with three dropping curves for
each dropping precedence as depicted in Figure
6. The dropping probability is calculated by the
following formula:










>

≤≤
−

−
<

=

drop

dropdrop
dropdrop

drop

drop

drop

thqlfor

thqlthfor
thth

thql
thqlfor

dp

max

maxmin
minmax

min

min

1

0

dp Dropping probability with
dphighDrop ≤ dpmediumDrop ≤ dplowDrop

drop Dropping precedences
(low, medium and high)

thmin Minimum threshold of the queue
thmax Maximum threshold of the queue

HighDrop
dropStart thth min=−

LowDrop
dropHard thth max=−

In our implementation, we try to protect the
network control traffic against dropping in the
way that its priority is just below the priority of
Premium Service. This is valid for both Priority
Scheduling or Weighted Fair Queuing output
queuing, which are the two options implemented
for output queuing (see Section 3.2)

YesToken
available ?

Tocken Bucket

Classification

Buffer Queuing System

Figure 3: Egress or first hop Premium Service route

A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

No

Packet discarded

YesToken
available ?

Tocken Bucket

Classification

Queuing System

Figure 4: Ingress Premium Service router

Token
available ?

Classifi-
cation

Medium Drop Prec.

Low Drop Prec.

High Drop Prec.

y

n

Token Bucket

Queue

set
Medium Drop
Precedence

Token
available ?

set
High Drop
Precedence

n

y

Token Bucket

Precedence Handler

Figure 5: Functionality of the precedence handler

1

Queue length (ql)0

S
ta

rt
-d

ro
p

H
ar

d-
dr

op

D
ro

pp
in

g
pr

ob
ab

ili
ty

 (
dp

)

Low Drop Precedence

Medium Drop Precedence

High Drop Precedence

th
re

sh
ol

d

th
re

sh
ol

d

Figure 6: RED queue for three dropping precedence

A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

3. LINUX IMPLEMENTATION OF DIFF-
SERV ROUTERS

Linux kernels allow a wide variety of traffic
control functions [13]. Several DiffServ modules
have been made available for Linux [14, 15]. The
traffic control functions are either hard-coded
during compiling the kernel or they can be loaded
dynamically after system initialization or during
run-time. Our implementation takes advantage of
the second option and allows to change the
configuration without resetting the node. New
modules such as shapers, markers, meters and
droppers can be added or removed via the
command line. The traffic control allows to
compile a single kernel for a node, which can be
configured as DiffServ first hop, ingress, egress
and interior routers, supporting flexible SLAs.

3.1 Linux Networking Support

Figure 7 shows IP packet processing in the Linux
kernel. A router forwards received packets directly
to the network, e.g. to another interface (1). If the
node is also an end system (server, workstation,
etc.) or an application level gateway, the packets
destined to it are passed to higher layers of the
protocol stack for further processing (2). This can
also include manipulation of fields and then
forwarding to the network (3) again. An end
system can generate packets by itself, which then
will be sent through the protocol stack to the
forwarding block (4). The forwarding component
does not only include the selection of the output
interface but also the selection of the next hop,
encapsulation, etc. From there, the packet is
queued for the particular interface. This is the
point of traffic control execution. Manipulation,

such as delaying packets, changing header fields,
dropping etc. can be done there. After traffic
control has released the packet, the particular
network device can pick it up for transmission.
The output queuing block is triggered by the
output interface. For processing the next packet,
the interface sends a start signal to the output
queuing block.
After compilation of tc and loading the modules,
the code components can be added via the
command line or a management tool (a Shell or
Perl script) to the outgoing queuing block. The
code consists of queuing disciplines, classes (the
identification of a queuing discipline), filters, and
policing functions (within filters and classes).
Figure 8 shows an example of a queuing
discipline. Packets, which are forwarded over the
same interface, may desire different treatment.
They have to be enqueued into different queuing
disciplines. For an enqueued packet the called
queuing discipline runs one filter after the other
until there is a match with a class. Otherwise, the
default queuing discipline is used. In the case of a
match, the packet is enqueued in the queuing
discipline related to the class for further
manipulation of the packet. Different filters can
point to the same class. Policing functions are
required in the queuing disciplines to ensure that
traffic does not exceed certain bounds. For
example, for a new packet to be enqueued, the
policing component can decide to drop the
currently processed packet or it can refuse the
enqueuing of the new one. Each network device
has an associated queuing discipline, in which the
packets are stored in the order they have been
enqueued. The packets are taken from the queue as
fast as the device can transmit them.

Input demultiplexing

TCP, UDP, ICMP ...

Upper layers:

Forwarding Output queuing

Traffic Control

Incoming

data

(1)

(3), (4)

(2), (3)

(4)

Data generated by the node
(2)

outgoing interface
Trigger from

Figure 7: Network packet processing

A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

Filter

Filter

Filter

Queuing discipline

Class

Default

Class Queuing discipline

Queuing discipline

Queuing discipline

Figure 8: Queuing discipline with filters and classes

3.2 DiffServ Modules for Linux

The framework of our implementation mainly
focuses on the enqueue and dequeue components
of the queuing discipline structure because these
components are the right place for the
Differentiated Services implementation. The
implementation of six queuing disciplines was
necessary to cover all four kinds of DiffServ
nodes. Some queuing disciplines work with
profiles. During initialization of these queuing
disciplines, the information is copied from a file
into the memory, from where the queuing
discipline can access it.
The DiffServ Service Handler sets the Class
Selector Codepoint according to a profile. Packets
that do not match with the profile are forwarded as
Best Effort packets. Network control traffic is
forwarded untouched as well. During enqueuing a
function is called, which compares the packet
header with the profile and then marks the packet
with the respective service.
The DiffServ Classifier splits the traffic into the
seven service branches (Premium Service, network
control traffic, four Assured Service classes and
Best Effort service) according to the DSCP. For
dequeuing packets from the different queues,
priority scheduling or a weighted fair queuing
variant can be used.

• For priority scheduling, the packets are
dequeued depending on the priority
parameters given to the queuing
discipline during initialization. The queue
with the highest priority is the first queue
that will be accessed. A queue can send
only if all queues with a higher priority
are empty. The recommended default
priority sequence is Premium Service,
network control traffic, Assured Services
Classes 1-4, Best-Effort.

• The Weighted Fair Queuing (WFQ)
variant gives always highest priority to
Premium Service packets over network
control packets. The remaining
bandwidth is shared among the Assured
Service and Best-Effort packets
according to the configured parameters.

The Assured Service Precedence Handler checks
incoming packets whether they are in-profile by
measuring the packet size (in bytes) against a
token bucket. An in-profile packet is forwarded
and the tokens are decremented by the size of the
packets. Otherwise, the packet is re-marked with a
higher dropping precedence. In the case of
medium dropping precedence, the packet is
measured against the respective token bucket. If
no tokens are available, the packet is forwarded
directly into the outgoing queue and marked with
high dropping precedence. The marked packets
might then be discarded in the following Three
Way RED queue.
The Three Way RED Queue drops packets
according to the RED parameter values. This is
done in the enqueue component. The dropping
probability is calculated depending on the
dropping precedence of incoming packets. The
packet will then either be dropped or forwarded to
the following FIFO queue in which the packet is
stored for dequeuing. Two parameter sets are
required. A limit defines the maximum number of
packets, the Three Way RED queue can buffer,
and floating-point numbers define the thresholds
of the discarding curves.
The Premium Service Policer Handler polices the
Premium Service traffic according to Premium
Service profiles. An arriving packet will be
forwarded to the FIFO queue, if there is a match
with the profile and if there are enough tokens
available in the respective token bucket.
Otherwise, the packet is not conforming to the
profile and is discarded.

A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

Since we have to use a shaper for each Premium
Service flow, there is the need for a Premium
Service Shaper Handler that forwards the packet
to these shapers. IP packets matching a profile are
forwarded to the respective shaper and are
discarded otherwise. This shaper module is part of
the standard Linux kernel distribution [20, 22].

3.3 Structure of DiffServ Routers

Figure 9 shows the structure of a first-hop router
with MF and BA classification. For Premium
Service, shaping is used, the Three Way RED

queue has been selected for the different AF
classes. An egress router looks quite similar but
does not need a service handler for MF marking.
An ingress router differs from the egress router in
having policing instead of shaping for Premium
Service and in having a service handler for
BA/MF re-marking.
Figure 10 shows the simplicity of an interior
router. The packets are classified in the BA
classifier and forwarded to the corresponding
queue of each service.

Prec. RED Queue

Best-Effort Service Queue

Network Controll Traffic Queue

Assured Service Precedence Handler

Assured Service Precedence Handler

Assured Service Precedence Handler

Assured Service Precedence Handler

Prec. RED Queue

Prec. RED Queue

Prec. RED Queue

Premium Service Shaper

Service Handler (MF Marking)

BA Classifier

Token Bucket Filter

FIFO for non IP packets

Figure 9: First hop router

A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

Precedence RED Queue

Precedence RED Queue

Precedence RED Queue

Precedence RED Queue

Best-Effort Service Queue

Network Controll Traffic Queue

Premium Service Queue

BA Classifier
Figure 10: Interior router

4. PERFORMANCE MEASUREMENTS

For performance measurements we used the ttcp
tool and a self-written UDP socket program for the
generation of aggressive bursty flows to several
destinations. We configured one router as first hop
and ingress router in order to test the
interoperation between the queuing disciplines.
For the measurements we used tcpdump and
shell scripts processing the tcpdump traces.
The following setup has been chosen for the
measurements with two flows: The host elmer
has been the source of the DiffServ flows (Assured
or Premium Service) and weasel4 has been the
destination. The Best Effort background traffic has
been sent from elmer to weasel . The
background traffic has been generated for each
measurement and filled up the rest of the available
bandwidth on the 10 Mbps link. In the sessions
with three flows, elmer has been the source of the
third flow and weasel5 has been the destination.
weasel , weasel4 and weasel5 were different
logical interfaces using the same Ethernet interface
of one host. The traffic source elmer was
connected via an 100 Mbps link. The router had
an incoming 100 Mbps interface and formed by
the 10 Mbps outgoing interface a bottleneck.
Table 1 shows measurements of a Best Effort
background flow and a Premium Service flow with
different bandwidth values for shaping and for
policing.
Table 2 shows the measurements of two Premium
Service flows through two shapers together with a
Best Effort background flow.

Table 3 shows measurements with an Assured
Service flow and a Best Effort background flow.
The Assured Service parameters have been as
follows:
• Queue length: 10 packets
• Low dropping precedence, Start: 0.9, End: 1.0
• Medium dropping precedence, Start: 0.1, End:

0.5
• High dropping precedence, Start: 0.0, End:

0.1
Table 4 shows measurements with constant Three
Way RED queue parameters but different
bandwidth values for the Precedence Handler. We
had an Assured Service flow and a Best Effort
background flow.
Assured Service parameters:
• Queue length: 20 packets
• Low dropping precedence, Start: 0.9, End: 1.0
• Medium dropping precedence, Start: 0.2, End:

0.5
• High dropping precedence, Start: 0.0, End:

0.2
Finally, we mixed Assured Service traffic with
Best Effort traffic and Premium Service traffic, the
last one was policed (ingress router setup). We
had an Assured Service flow, a Premium Service
flow, and a Best Effort background flow.
Assured Service parameters:
• Queue length: 20 packets
• Low dropping precedence, Start: 0.9, End: 1.0
• Medium dropping precedence, Start: 0.1, End:

0.5
• High dropping precedence, Start: 0.0, End:

0.1

A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

��������������������

����������

����������

Ethernet Hub
10 Mb/s

Network

130.92.66.0

elmer.unibe.ch
130.92.66.142

10
0

M
b/

s

10
0

M
b/

s

10
0

M
b/

s

Ethernet Switch

10.1.2.2

10.1.2.4

10.1.2.5

Observer - running TCPDUMP

Group
VLAN

13
0.

92
.6

6.
14

1
da

ffy
.u

ni
be

.c
h

10
.1

.2
.1

ba
bo

on

a first hop router and an ingress router
Test node for the modules and the setup of

10
 M

b/
s

10
 M

b/
s

10
 M

b/
s

eth0:1 : weasel4

eth0:2 : weasel5

eth0 : weasel

One Ethernet
interface:

Figure 11: Test network

 Bandwidth (setup) Number of Packets Achieved Bandwidth Time Period

3570 65.7 kb/s 628.39 s 64 kb/s

4708 65.6 kb/s 830.29 s

6372 131.3 kb/s 561.78 s

Shaper

128 kb/s

6350 131.4 kb/s 559.35 s

41408 799.8 kb/s 599.35 s 800 kb/s

32229 799.2 kb/s 466.80 s

133105 1.280 Mb/s 1203.74 s

Policer

1.28 Mb/s

126654 1.279 Mb/s 1146.25 s

Table 1: Premium Service shaping and policing with different bandwidth values

 Bandwidth (setup) Number of Packets Achieved Bandwidth Time Period

128 kb/s 8404 130.8 kb/s Shaper

64 kb/s 4217 65.6 kb/s
743.78 s

Table 2: Two parallel Premium Service shapers in parallel

Dropping
Precedence

Bandwidth (setup) Number of Packets Achieved Bandwidth Time Period

low 800 kb/s 58201 799.5 kb/s

medium 640 kb/s 46559 639.5 kb/s
842.73 s

high - 0 0

Table 3: Assured Service Flows

A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

Dropping
Precedence

Bandwidth (setup) Number of Packets Computed
Bandwidth

Time Period

low 800 kb/s 63850 798.9 kb/s

medium 640 kb/s 51006 638.2 kb/s

high - 190059 2378.1 kb/s

925.17 s

low 1280 kb/s 70555 1276.6 kb/s

medium 960 kb/s 52321 945.2 kb/s

high - 87669 1583.7 kb/s

640.80 s

Table 4: Different precedence handler bandwidths

Service Dropping
Precedence

Bandwidth (setup) Number of Packets Achieved
Bandwidth

Time Period

Low 1280 kb/s 44812 1276.8 kb/s

Medium 960 kb/s 32212 917.8 kb/s
Assured
Class I

High - 13454 383.3 kb/s

Premium Policer 1280 kb/s 44813 1276.8 kb/s

406.29 s

Low 1280 kb/s 72544 1278.8 kb/s

Medium 960 kb/s 52886 932.2 kb/s
Assured
Class I

High - 23740 418.5 kb/s

Premium Policer 1280 kb/ s 71349 1257.7 kb/s

656.70 s

Table 5: Ingress router with Premium, Assured and Best Effort Service

5. RELATED WORK

There are currently several DiffServ
implementations under Linux being developed,
e.g., the KIDS implementation from University of
Karlsruhe [16]. The most similar one to our
implementation is the implementation described in
[14] which we will call the EPFL implementation
hereafter. This and our implementation are both
based on the Linux traffic control package. While
for our implementation sophisticated DiffServ
queuing and scheduling components such as the
Three-Color-Marking for Assured Service have
been developed, the EPFL implementation tries to
use more general components not tailored to
DiffServ. The classification of the EPFL is more
flexible but required to modify core Linux data
structures while our implementation avoided this.
For output queuing, we developed a WFQ variant
based on the bad performance behavior
experienced from other available output
scheduling mechanisms. Another significant
difference is the kind of configuration of both
implementations. The EPFL implementation
requires rather long and more complex tc

configuration scripts. By using ASCII
configuration tables we believe that our approach
simplifies the configuration of a DiffServ router by
human users. Our implementation also allowed to
integrate a layer-4 flow detection mechanism [12].
In addition, special queuing disciplines for ATM
have been implemented that allow to replace
software shaping and policing by ATM hardware
[17].

6. CONCLUSIONS AND OUTLOOK

This paper described a DiffServ implementation
for Linux performing DiffServ processing at the
egress point of a router or an end system. The
measurements clearly show the usefulness of our
implementation architecture. In addition, some
Differentiated Service processing such as policing
could be located at the ingress interface of a
router. This would allow to perform traffic
conditioning functions on the whole traffic
received from a single DiffServ domain, e.g. from
a single customer. Otherwise, if the traffic is
spread over several output interfaces, the
aggregate traffic can not be policed correctly.

A LINUX IMPLEMENTATION OF A DIFFERENTIATED SERVICES ROUTER

More detailed performance measurements
allowing the comparison with the KIDS
implementation will be published in a subsequent
paper.

ACKNOWLEDGEMENTS

The implementation platform used at the University of Berne has been funded by NEC Europe Ltd. the
SNF R’Equip project no. 2160-053299.98/1, and the foundation “Förderung der wissenschaftlichen For-
schung an der Universität Bern”. NEC Europe Ltd. funded several persons involved in this project at
University of Berne. The authors are grateful to Werner Almesberger (EPF Lausanne) for constructive
discussions on Linux related issues.

REFERENCES

[1] J. Heinanen, R. Guerin: “A Single Rate Three Color Marker”, Internet Draft draft-heinanen-

diffserv-srtcm-01.txt, May 1999.
[2] IETF-DiffServ-Working Group, “Differen tiated Services for the Internet.”

http://www.ietf.org/html.charters/diffserv-charter.html/.
[3] K. Nichols, V. Jacobson, and L.Zhang, “A Two-bit Differentiated Services Architecture for the

Internet”, Internet RFC 2638, July 1999.
[4] K. Nichols, S. Blake, F. Baker, and D. L. Black, “Definition of the Differentiated Service Field

(DS Field) in the IPv4 and IPv6 headers,” Internet RFC 2474, December 1998.
[5] M. Borden and C. White, “Management of PHBs”, Internet Draft:

draft-ietf-diffserv-phb-mgmt-00. txt, September 1998.
[6] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB Group”,

Internet RFC 2597, June 1999.
[7] V. Jacobson, K. Nichols, and K. Poduri, “An Expedited Forwarding PHB”, Internet RFC 2598,

June 1999.
[8] D. Clark and J. Wroclawski, “An Approach to Service Allocation in the Internet”, Internet Draft

draft-clark-diff-svc-alloc-00.txt, July 1997.
[9] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance” in

IEEE/ACM Transactions on Networking, Vol.1 N.4, pp. 397-413, August 1993.
[10] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture for

Differentiated Services”, Internet RFC 2475, December 1998.
[11] Y. Bernet, D. Durham, and F. Reichmeyer, “Requirements of Diff-Serv Boundary Routers”,

Internet Draft draft-bernet-diffedge-01.txt, Nov. 1998.
[12] T. Harbaum, M. Zitterbart, F. Griffoul, J. Röthig, S. Schaller, H. J. Stüttgen: Layer 4+ Switching

with QoS support for RTP and HTTP, Proceedings of IEEE Globecom Conference, Rio de
Janeiro, Brazil, December 1999

[13] A. Kuznetsov, “Traffic Control Software Package for Linux.” ftp://ftp.inr.ac.ru/ip-routing/.
[14] W. Almesberger, J. H. Salim, and A. Kuznetsov, “Differentiated Services on Linux”, Internet

Draft: draft-almesberger-wajhak-diffserv- linux-01.txt, June 1999.
[15] W. Almesberger, “Linux Traffic Control - Implementation Overview.”

ftp://lrcftp.epfl.ch/pub/people/almesber/pub/tcio-current.ps.gz, Nov. 1998.
[16] K. Wehrle, R. Bless: “Evaluation of Differentiated Services using an Implementation under

Linux”, Proceedings of the International Workshop on Quality of Service (IWQOS'99), London,
UK, May 31 - June 4, 1999.

[17] T. Braun, A. Dasen, M. Scheidegger, K. Jonas, H. Stüttgen: Implementation of Differentiated
Services over ATM, IEEE Conference on High-Performance Switching and Routing,
Heidelberg, June 26-29, 2000.

