
Chapter 7
Multimedia Nuts-and-Bolts

It should come as no surprise that Squeak, the language for the Dynabook,
should be rich in support for multimedia. Squeak already has lots of
support for audio and graphics, including standard formats such as AIFF,
WAV, MIDI, GIF, JPEG, VRML, MIDI, and several other acronyms. It
has a terrific 3-D rendering engine (by Andreas Raab), and a powerful
new scripting environment for 3-D (by Jeff Pierce). Its networking support
is excellent, including web browsing and serving, email, and IRC. As
befits an environment where the goal is to explore new kinds of media,
there are some new formats that are Squeak-specific that are quite
exciting.

The format for this chapter will be less tutorial than in past chapters.
At this point, you have seen and worked with Squeak code, and are
comfortable manipulating Morphic user interfaces. You know how to take
an example and figure out how to use it in your own way. This chapter
will be an overview of the various multimedia capabilities in Squeak. The
presentation will point out the pieces—the “nuts and bolots”—leaving it to
you to dig in for the details.

The pattern of presentation will be much the same as in previous
chapters: Concrete before abstract. In each media format discussed,
existing Morphic tools that support that media are presented first, then
some Squeak code that provides access to the underlying functionality is
described.

In general, you should be in Morphic for all of this chapter.
Relatively few of the multimedia tools work well in MVC, though most of
the underlying functionality will work in either. Morphic is the future of
Squeak interfaces, so most new development is occurring there.

1 Text
Most people don’t think about text as the very first thing to deal with when
they talk about multimedia, but text is still the most important medium for
communication on computer displays. Good multimedia often requires
good text. Squeak’s text support is very good. Besides the normal font and
emphases supports, it allows linking between multiple text areas and the
ability to embed graphics and flow around them.

1.1 Exploring Squeak’s Text
You should explore the Play With Me windows which are collapsed along
the side of the image when you first start Squeak. Play With Me 5 provides
an example of Squeak’s ability to flow text along curves and through
multiple TextMorph instances (Figure 1). If you resize the CurveMorph

2

Multimedia Nuts-and-Bolts

at the top larger (drag out on one of the yellow dots), you’ll find that text
flows from the bottom rectangle, through the “pipe,” and into the curve.
Make the curve smaller, and the text flows back down.

There are actually four TextMorphs in this picture: One in the large
CurveMorph, one in the “pipe” CurveMorph, a third in the rectangle
(an instance of GradientMorph), and the fourth embedded in the ellipse
inside the rectangle. The first three are linked in that text flows from one
to the other to the other, and back again. All four text areas are embedded
in their respective shapes, and they are set to fill owner’s shape (an option
in the TextMorph’s red halo menu when the TextMorph is embedded in a
shape).

The bottom rectangle’s TextMorph is also set to avoid occlusions
(another red halo menu). When a TextMorph is avoiding occlusions, then
text flows around a shape laid on top of it. Morphic-select the ellipse and
move it around with the brown halo (which moves without pulling it out
of its embedded), and you’ll see the text flow around the ellipse.

Figure 1: Text Flowing Through Curves

You can make your own linked TextMorphs. Create a TextMorph
(simply drag out “Text for Editing” from the Supplies flap or the Standard
Parts Bin), and choose Add successor from its red halo menu. A new,
empty TextMorph will be attached to your cursor—just drop it
somewhere. Now, start typing into your original TextMorph. When you
stop typing, resize the TextMorph, and you’ll see the text flow between
the two.

You already saw in an earlier chapter that TextMorphs can change
their style, font, and alignment. There are halo menus on TextMorphs

3

Multimedia Nuts-and-Bolts

for changing each of these. You select the text that you want to modify,
then choose the appropriate menu. Changes to emphasis, font, and style
always take effect on the currently selected text. There are also command-
keys for making text changes. Under the Help menu, look at Command-
key help. On a Macintosh, command-1 will turn selected text to 10-point,
command-3 will choose 18-point, and command-7 will boldface.
(Repeating command-7 will toggle back to plaintext.) On Windows and
UNIX, the command key is the Alt key, e.g., Alt-1 will 10-point selected
text.

1.2 Programming Squeak’s Text
As you would expect, all of the text manipulations described above are
also accessible through Squeak code. The below example demonstrates
several capabilities at once:

• Creating a TextMorph and embedding into an Ellipse,

• Making the TextMorph fill the Ellipse,

• Selecting text and changing its emphasis, and

• Creating a second TextMorph to fill into.

texta := TextMorph new openInWorld.

ellipse := EllipseMorph new openInWorld.

ellipse addMorph: texta. "Embed the text in the Ellipse"

texta fillingOnOff. "Make the text fill the Ellipse."

texta contentsWrapped: 'My first textMorph in which I explore
different kinds of flowing.'.

"Demonstrating of changing emphases"

texta editor selectFrom: 1 to: 2.

texta editor setEmphasis: #bold.

"Make a second text area"

textb := TextMorph new openInWorld.

texta setSuccessor: textb. "A flows to B"

textb setPredecessor: texta. "B flows back to A"

4

Multimedia Nuts-and-Bolts

texta recomposeChain. "Make the flow work."

As you resize the ellipse containing the first TextMorph (texta in
the example), the linked successor (textb) automatically takes in the
overflow (Figure 2). You can toggle whether or not occlusions are avoided
with the message occlusionsOnOff. (fillingOnOff is also a toggle—the
default is to have rectangular shape.)

Notice that the TextMorph itself doesn’t know how to change text
style. The TextMorph uses a ParagraphEditor to handle those kinds
of manipulation. We access the TextMorph’s editor with the message
editor in the above example. You can learn more about how to change
alignment, emphasis, and style by looking at the ParagraphEditor
methods for changeAlignment, changeEmphasis, and
changeStyle.

Figure 2: TextMorph Filling a Curve and Linking

 Other kinds of fonts are possible in Squeak. The class StrikeFont
knows how to read BitFont and Strike2 formats in order to define new
TextStyle font arrays—see readFromStrike2: and
readFromBitFont: methods. The common TrueType font format is not
supported for TextMorph instances (as of Squeak 2.7), but can be read
and manipulated using the TTFontReader and its associated classes
(such as the demonstration tool TTSampleFontMorph).

SideNote: Any Morph can generate Postscript for itself, including text
areas. If you just ask a Morph to generate its Postscript (control-click
menu or red-halo menu), it will generate EPS (Encapsulated Postscript)
meant to be placed inside another document. Later, we’ll introduce
BookMorphs, which generate document Postscript.

Exercises with Text
1. Extend the text style menus to support single item selections for
combinations of styles, like bold and italics, or bold and strikeout.

2. (Advanced) There are common font formats on the network that are not
currently supported well by Squeak, such as TrueType and the MetaFont
format. These are well-documented, and there is already a basic reader for

5

Multimedia Nuts-and-Bolts

TrueType fonts. Create conversion routines so that these can be read and
converted into StrikeFont instances.

2 Graphics and Animation

2.1 Simple Graphics Tools
Graphic images are easy to create or import into Squeak. From the file list,
any file whose ending is .bmp, .gif, or .jpeg or .jpg can be directly opened
as an ImageMorph (yellow button menu, Open image in a window). You
can also use any of these images as a background image as well.

To create a graphic image, choose Make New Drawing from the New
Morph menu from the World Menu. An onion skin layer (partially
transparent) will appear with the painting tools (Figure 3). The onion skin
allows you to create a modification for something already on the screen,
like the onion skin that animators use for drawing the next cel in a cartoon.

The painting tools allow for basic painting with a number of different
sizes of brush, as well as filling (paint bucket) and erasing. The gradated
colors is actually a pop-up color picker: When you mouse over that area,
you are offered a wide variety of colors to choose from. You can also use
the dropper tool to select a color already on the display. You can draw
basic objects (lines, rectangles, etc.). To use the stamps on the bottom,
click on the corresponding box, then select something already on the
display. You can now stamp the object you selected. When your drawing
is complete, choose Keep, and your drawing will be a SketchMorph
instance.

6

Multimedia Nuts-and-Bolts

Figure 3: Paint Box for Creating New Graphics

As we’ve already seen, graphics are easily rotated and resized, as is
any morph. The basic halos allow the rotation and resizing of any morph,
ImageMorphs and SketchMorphs included. What is not immediately
obvious is that any morph can also be easily animated to follow a simple
path, even without using the Viewer framework.

Every morph (even windows) has a red-halo menu item to Draw new
path. After selecting it, the cursor changes into a square with crosshairs,
and you can now drag around the screen where you want the morph to go.
When a path has been defined, your red-halo menu will change with the
option to follow, delete, or draw a new path. Following the path has the
morph move along the path.

2.2 Programming Simple Graphics
We have already seen in Chapter 3 that Squeak provides a powerful
collection of image manipulation tools in the class Form. Forms can be
scaled, rotated, chopped into pieces, and manipulated in any number of
ways. Forms can easily be used in Morphic as well.

ImageMorphs are basically wrappers for Forms. Create an
ImageMorph, set its image to a form, then tell it to openInWorld.

7

Multimedia Nuts-and-Bolts

(ImageMorph new image: (Form fromUser)) openInWorld.

Forms can be read from external format files easily. Form
fromFileNamed: ‘filename.gif’ will automatically convert GIF, JPEG,
BMP, and PCX file formats into a Form. Forms can also be saved out via
writeBMPfileNamed:, using the internal format writeOn:, and via the
ImageReadWriter class hierarchy that knows about several external
formats (including GIF, JPEG, PCX, and XBM).

To create your own Forms, there are Pens for drawing, and classes
like Rectangle, Quadrangle, Arc, Circle, and Spline that know how
to draw themselves onto a Form. Typically, the display objects and
display paths like these have drawOn: methods that take a form as an
argument. The Color class provides instances that represent various colors,
including Color transparent.

The simple animation described earlier is built into the Morph class.
The method definePath follows the Sensor to fill an ordered collection
of points as the Morph’s pathPoints property. The method
followPath moves the morph along the points in pathPoints.

More sophisticated animations are possible by digging deeper into
how graphics are presented in Squeak. Animated displays are really a
matter of moving bits around on the screen. The class BitBlt (for bit
block transfer, pronounced “bit-blit”) knows how to do sophisticated
translations of bits where the graphics to be laid on the screen are
combined in interesting ways with the bits underneath. BitBlt has sixteen
combination rules that explain how the source and destination bits are
mixed. A really compelling example is the class message
alphaBlendDemo which you can try with the below workspace code.

Display restoreAfter: [BitBlt alphaBlendDemo]

This demo displays several blocks of varying transparency, and then
lets you “paint” (use the red button to lay down paint) which is semi-
transparent with the underlying display. But more layers of “paint” is less
transparent. This is an example of the sophisticated effects that BitBlt
allows you to create.

BitBlt was invented by Dan Ingalls when he solved the problem of
overlapping windows at Xerox PARC in 1974. The big problem of
overlapping windows is saving parts of the underlying window for
repainting later, updating as necessary when things move, and doing it all
very quickly. BitBlt was made for this purpose, but is very general and
enables other UI elements (pop-up menus) and animations.

For Squeak, Dan extended BitBlt for color, and then invented a
successor to BitBlt, WarpBlt. WarpBlt takes a quadrilateral as its source
pixels (not necessarily a rectangle anymore). The quadrilateral’s first point

8

Multimedia Nuts-and-Bolts

is the pixel that will end up in the top left of the destination rectangle,
again, combining it with the same kinds of rules that BitBlt had. The
result is very fast rotations, reflections, and scaling. For an interesting
demonstration of WarpBlt, try the class message test1.

Display restoreAfter: [WarpBlt test1]

It’s WarpBlt that allows Squeak to easily create thumbnails of
projects (and BookMorphs, as we’ll see). It’s easy to use WarpBlt to
create other kinds of effects. For example, a simple modification of
Project’s makeThumbnail creates a method for Morph for creating a
thumbnail of any Morph.

makeThumbnail

| viewSize thumbnail |

"Make a thumbnail image of this image from the Display."

viewSize ←self extent // 8.

thumbnail ← Form extent: viewSize depth: Display depth.

(WarpBlt toForm: thumbnail)

sourceForm: Display;

cellSize: 2; "installs a colormap"

combinationRule: Form over;

copyQuad: (self bounds) innerCorners

toRect: (0@0 extent: viewSize).

(ImageMorph new image: thumbnail) openInWorld.

2.3 3-D Graphics for End-Users
When Andreas Raab joined the Squeak team, he built Balloon, a portable
3-D rendering engine. Balloon is accessed almost entirely through
B3DRenderEngine. It’s a very powerful 3-D system that supports different
kinds of lights and textures, and pluggable rasterizer, shader, clipper, and
transformer. The best quick example of Balloon is to create a new
B3DMorph and play with it some.

Jeff Pierce had an internship at Disney Imagineering, and he
developed Wonderland in Squeak. Jeff was part of a team (led by Randy
Pausch at Carnegie Mellon University) that developed a Windows-specific
3-D scripting system called Alice. Wonderland is essentially Alice, but on
top of Andreas’ Balloon.

The window Play With Me – 7 (collapsed when you start the image) is
an open Wonderland (Figure 4). A Wonderland has (at least) two pieces to
it: A WonderlandCameraMorph (at left) which shows you the world,

9

Multimedia Nuts-and-Bolts

and a WonderlandEditor (at right) where the end user scripts the world.
This Wonderland holds a bunny, which is added to the Wonderland by
reading in a model. The Editor provides a workspace for scripting, a
hierarchical view of all the objects, and buttons for manipulating the
space—including an amazing ability to Undo, even actions executed as
scripts.

Figure 4: An Open Wonderland in PWM-7

To create a new Wonderland, execute Wonderland new. In new
Wonderlands, the editor window includes a Quick Reference tab (like the
Script and Actor Info tabs seen in Figure 4) that provides the basic
messages that objects understand in Wonderland. There are a standard set
of commands that all Wonderland objects understand with respect to
motion, rotations, responding to outside actions (like mouse clicks),
changing colors, and other categories.

The scripting area in the editor is a modified workspace. Like a
workspace, it can have various variables pre-defined. w is pre-defined to
represent the current Wonderland. camera is the current camera, and
cameraWindow is its window. All the objects in the hierarchical list are
also defined in the workspace.

Wonderland can load in .mdl (Alice internal format) 3-D object files,
VRML files (.vrml), and 3-D Design Studio (.3ds). The Alice project has
made available a large collection of well-designed 3-D objects which is
available on the CD and at
ftp://st.cs.uiuc.edu/pub/Smalltalk/Squeak/alice/Objects.zip. Each of the
methods to load one of these file types expects a path name to the
appropriate kind of object—the below examples assume Macintosh
pathnames (colon as path delimiter).

10

Multimedia Nuts-and-Bolts

• To load a .mdl object (using one of provided examples, a snowman), w
makeActorFrom:
'myDisk:Squeak:Objects:Animals:Snowman.mdl'

• To load a .vrml object, w makeActorFromVRML:
'myDisk:Squeak:VRML:OffWeb.vrml'.

• To load a .3ds object, w makeActorFrom3DS:
'myDisk:Squeak:3DS:myBox.3ds'.

Once you have some objects to play with, scripting them is
tremendous fun. There are a few really interesting insights into scripting
that permeate Wonderland and help to understand it:

• Your commands to Wonderland objects do not cause immediate jumps
to the desired state. Rather, all changes morph between the current
state and the desired state. bunny head setColor: green does not
immediate turn from pink to green, but makes a visible transition.
Morphing between states allows you to script as a series of desired
states, and not worry about creating a good visual representation of the
process.

• Method names are chosen so that simple actions are simple, and more
selectors allow for greater specificity. bunny turn: right turns the
bunny a bit to the right. bunny turn: right turns: 2 does two quick
rotations right. bunny turn: right turns: 2 duration: 4 does two
rotations over a space of four seconds.

• Wonderland works hard to make the language as obvious as possible.
The scripting world is preloaded with symbols (like right), and
WonderlandActors get method defined for them on the fly so that a
bunny knows its head and can be accessed as bunny head.

• All scripts actually return an Animation object of some kind. The
concreteness of having all scripts correspond to objects allows for a
powerful Undo operation—undo can literally undo any animation
operation, and thus, any script. But even more, it allows for scripting
sequences and patterns without ever writing a method.
fd←snowman move: forward is valid, and fd points to an
Animation that causes the snowman to go forward. rt←snowman
turn: right also works, and w doTogether: {fd . rt} causes the
snowman to walk and turn at the same time.

It’s possible to construct objects even without using any external
modeling program. Wonderland understands the core creation commands
makeActor and makeActorNamed: The default Objects folder has lots
of base shapes like spheres and squares. These can be moved around and
then attached to an actor with newObject becomeChildOf:
newActor. Objects can easily be colored.

11

Multimedia Nuts-and-Bolts

Even more powerful, objects can easily have textures wrapped onto
them. snowman middle setTextureFromUser will let the user select
a portion of the display (a Form) then it will convert that to a texture and
wrap it around the snowman’s middle snowball. The method setTexture:
will allow for a programmed input texture.

Most powerful is to create an active texture:

tex ← w makeActiveTexture.

snowman middle setTexturePointer: tex

When the active texture is created, a small blue rectangle appears on
the Morphic desktop (Figure 5). Whatever is embedded in this blue
rectangle appears in the Wonderland on the object—in real time. Embed a
sketch, then resize it, and watch the snowman’s middle change in the
Wonderland as the rectangle is updated. Even more powerful is to embed
something dynamic in the texture (e.g., the pluggable text area from the
Scamper web browser)—one can have a working browser sitting in 3-D.
When the message is sent initializeMorphicReactions to the textured
Wonderland actor, then any clicks into the texture causes the 2-D Morphic
space to update. With an active texture, the 3-D space can use anything
from the 2-D space, and complex, dynamic textures are easily applied to
Wonderland actors.

Figure 5: A Wonderland CameraWindow and WonderlandActor, with an
ActiveTexture

2.3.1 Programming Wonderland without the Script Editor
It is possible to use Wonderland as a general world for 3-D graphics. It is
less efficient this way—the underlying Balloon 3-D rendering engine is
powerful and can be accessed directly, and Wonderland’s morphing makes

12

Multimedia Nuts-and-Bolts

exact control of animation a bit more difficult. But since Wonderland is so
wonderfully scriptable, the transition from scripting to lower-level
programming is eased by continuing to use Wonderland outside of the
script editor.

To create a Wonderland that is under your control without an editor,
execute:

w ← Wonderland new.

w getEditor hide

To bring the editor back:

w getEditor show

All the basic commands to the Wonderland will still work here, as
they did in the script editor, e.g., w makeActorFrom:
'myDisk:Squeak:Objects:Animals:Snowman.mdl' as long as w is
set to a Wonderland correctly. Obviously, executing a command like this
will not put a variable named snowman in your method, as it does
automatically for you in the scripting window. However, the step is very
small—simply ask the Wonderland for its namespace. (w getNameSpace
at: 'snowman') does actually return the WonderlandActor corresponding to
the Snowman model, if you’ve already created it.

Better yet, all the other niceties of the scripting world are still
available. Symbols like #right and #left are understood by
WonderlandActor methods. Even more amazing, the methods that
WonderlandActors understand for accessing the objects in their hierarchy
work still. Thus, these messages do what you would expect:

(w getNamespace at: 'snowman') turn: #right

(w getNamespace at: 'shark') torso tail turn: #right

2.4 Flash Movies
Flash is a vector-based animation format that Macromedia supports with
its Flash and Shockwave products (http://www.macromedia.com/). Flash
animations are small, interactive, and can contain music as well as
graphics. They are also well-supported by Squeak.

Flash movies (with file endings .fla and .swf) can be opened from the
file list, using the yellow button menu. A FlashPlayerMorph will open
with the Flash movie embedded. All the interactive components work
(e.g., clicking on Next buttons), and sounds will play as expected. Figure 6
is an example taken from Macromedia’s Flash tutorial.

13

Multimedia Nuts-and-Bolts

Figure 6: Flash Player on Movie from Macromedia's Flash Tutorial

The red halo menu on a Flash player provides some interesting
capabilities. A control panel is available for stepping through and
exploring a Flash movie. A thumbnail view shows an entire Flash movie
at once, and by selecting a subset of the frames, a new Flash movie can be
created.

The Flash support in Squeak is very powerful in its integration with
the rest of Morphic. Individual Flash characters can be dragged out of the
Flash movie and laid on the desktop, to be re-programmed or re-used as
desired (Figure 7). You can Morphic-select objects in the Flash movie,
then use the pickup (black) halo to drag them out onto the desktop.

Figure 7: Dragging a Flash Character out of a Flash Movie

14

Multimedia Nuts-and-Bolts

Exercises with Graphics and Animation
1. Create a drawing tool, rather than a painting tool, in Squeak. Let the
user draw rectangles, lines, and ellipses, with a palette for choosing colors
and line thicknesses and the ability to change layering. Provide an option
for allowing the user to create the drawing as individual morphs or as a
composite SketchMorph.

2. The painting tool currently lays down colored pixels in strips that
completely overwrite the underlying background. Some painting tools
today (like Dabbler and Painter) provide more complex painting, where
laid paint can interact with the underlying paint (as do oils or water colors
in the real world) and can even be laid in smaller elements, as if by the
individual threads in a brush. Create modified brushes in the Squeak paint
tool to gain some of these effects.

3. Create a movie or play (depending on your definition) using
Wonderland.

4. (Advanced) Build a Flash composition tool, perhaps using the built-in
path animation tools to create easily Flash movies.

5. Create a video game using Wonderland. Use the reaction methods so
that clicking on objects does things, perhaps changing scenes or moving
objects.

6. (Advanced) Used Wonderland to create a metaphor for other things in
your system. For example, create a 3-D file manager by mapping files in a
directory to objects in 3-D which can be opened if they’re moved to a
certain spot, or deleted if dropped into another spot.

3 Sound
Squeak’s sound support is terrific. Excellent sound support helps to
achieve the goal of a Dynabook. Squeak can handle sampled sound, can
synthesize sound, and can handle higher-level sound formats like MIDI.

3.1 Recording, Viewing, and Editing Sound
The basic sound recording capability is the RecordingControlsMorph
that allows the user to record and playback sound, up to available memory
(Figure 8). (Only works on platforms whose VM’s have sound recording
implemented, which is Macintosh, Windows, and Linux as of this
writing.) Once a sound is recorded, it can be trimmed (to remove the lack
of sound at the beginning of a recording), tiled, or shown. A tiled sound
can be titled, and is then available in the Viewer framework (Figure 9).

15

Multimedia Nuts-and-Bolts

Figure 8: Recording Controls Morph

Figure 9: Tiled Sound

Showing a sound means to open a WaveEditor on it (Figure 10). A
WaveEditor provides an impressive collection of tools for exploring and
modifying the sound—setting a cursor, playing before or after the cursor,
trimming before or after a cursor, even generating a Fast Fourier
Transform (FFT) of the sound (Figure 11). (Roughly, an FFT is a graph of
the sound, where the frequencies are on the horizontal axis and the
amplitude of each frequency is the vertical axis.) There are additional
editing functions available in the menu triggered by the <> button, not
available in the obvious buttons.

The sound tile shown in Figure 9 references a named sound that is
stored in an internal sound library. Other sound tiles also just point to the
named sound, which saves on space. However, for some applications (like
embedding sound in a BookMorph, discussed later in this chapter),
you’d like a sound tile that embeds the sound in the tile itself. The original
sound tile in Squeak did that, and it’s possible to get it back by simply
setting a boolean value to false in the makeTile method of
RecordingControlsMorph (Figure 12).

16

Multimedia Nuts-and-Bolts

Figure 10: Showing a Wave Form

Figure 11: Fast Fourier Transform of the Recording

Figure 12: Old-style Tiled Sounds, and Where the Code is Changed

There is one additional morph that is very valuable for exploring
sound, and that’s the SpectrumAnalyzerMorph (Figure 13). The
SpectrumAnalyzerMorph can display incoming sound in three different
ways: As a sonogram, as a continuous waveform, or as a continually
updating FFT. Choosing between types is available in the Menu button,
and pressing the Start button starts recording. The
SpectrumAnalyzerMorph is an amazing tool for exploring sound—and

17

Multimedia Nuts-and-Bolts

makes for a wonderful demonstration when someone claims that Squeak is
too slow to do real-time processing!

Figure 13: SpectrumAnalyzerMorph

3.2 Sound Classes
The heart of Squeak’s sound support is the class AbstractSound. As the
name implies, AbstractSound is an abstract class—it defines
functionality for its subclasses, but it’s not really useful to instantiate on
its own. AbstractSound provides the default behavior of being able to
play a sound, to viewSamples (to open it up in a WaveEditor),
concatenating sounds, and others.

The model of sounds used in AbstractSound is that all sounds
consist of a set of samples (which are sometimes stored in a
SoundBuffer instance). If you were to graph these samples, you’d get
the same kind of waves that you see in the Wave Editor—periodic, values
alternating between positive and negative. The samplingRate is the
number that tells you how many samples map to a second. The basic
model of sound-as-samples works just as well for sounds that are
synthesized (i.e., the samples are actually computed) as well as for those
that are recorded or sampled (i.e., the samples are actually the input
numbers from the interface to the microphone on your computer, via the
SoundRecorder). Sound envelopes can be used as filters or functions
that shape the samples as they’re being generated to create different
effects.

18

Multimedia Nuts-and-Bolts

The method that generates the samples to be played is
mixSampleCount:into:startingAt:leftVol:rightVol:. For objects that
synthesize sounds (like FMSound and PluckedSound), this method
actually figures out the sound of an instrument like an oboe or a plucked
string instrument and computes the appropriate samples on the fly. For
classes that handle recorded sounds (like SampledSound), this method
provides the right number of samples from the given recording. As you
might expect from the name of the method, Squeak’s sound support
automatically mixes sounds played together and can handle stereo sound
with different volumes for the left and right speakers. The actual
production of the sound (that is, sending the samples to the sound
generation hardware) is handled by the class SoundPlayer.

AbstractSound is one of those classes that gives away many of its
secrets by poking through its class methods. There are example methods
there for playing scales and a Bach fugue. There are also examples of the
simple class methods providing for easily generating music, the most
significant of which is noteSequenceOn:from:. This method takes a
sound and a collection of triplets in an array, and has that sound play those
triplets. The triplets represent a pitch (name or frequency number), a
duration, and a loudness, or #rest and a duration.

A collection of synthesized instruments is built into Squeak. They are
available through the class message AbstractSound soundNames.
(FMSound, as a subclass of AbstractSound that doesn’t override
soundNames, also has access to the same method.) By asking for the
soundNamed:, you can get the sound object that synthesizes a given
instrument, then use it as input to noteSequenceOn:from:.

(AbstractSound noteSequenceOn:

(FMSound soundNamed: 'brass1') from:

#((c4 1.0 500) (d4 1.0 500) (e4 1.0 500)

(c5 1.0 500) (d5 1.0 500) (e5 1.0 500))) play

"Play c, d, e in the fourth octave, then c, d, e in the fifth. 1.0
duration. 500 volume."

You can add to the synthesized instruments in a couple of different
ways. One way is to create an instance (e.g., of FMSound) that will
generate samples that simulate an instrument. That’s how the oboe and
clarinet instruments are provided in Squeak. Another way is to provide a
sample (recording) of an instrument. Most commercial synthesizers use
samples to generate instruments. The advantage is high quality, but the
disadvantage can be very large memory costs. (A 5Mb or more sample is
not uncommon.) To create a sampled instrument, you need to make one or
more recordings of different notes on the same instrument, then identify

19

Multimedia Nuts-and-Bolts

loop points—points in the wave which can be repeated for as long as a
given note needs to be sustained. The WaveEditor can be used for this
process, as can many commercial and shareware sound recording
packages.

A second sound library is built into the SampleSound class, also
available through soundNames and soundNamed:. These are the
sounds that are available as tiles in the Viewer framework. New-style
sound tiles store their samples into this library, and the sound tile only
stores the name of the sound in the library.

Sounds can be compressed, decompressed, and read and stored from
standard compressed sound formats. AIFF files can be read and written
(fromAIFFfileNamed: and storeAIFFOnFileNamed:), WAV files can
be read (fromWaveFileNamed:) and easily written (see Chapter
[MAT]), and U-Law files are easily handled (uLawEncode: and
uLawDecode:). The more general compressing-decompressing (codec)
classes are those inheriting from SoundCodec. SoundCodec is an
abstract class defining an architecture for codec classes (see
compressSound: and decompressSound:). Squeak comes with
codec classes for ADPCM, GSM, MuLaw, and Wavelect codecs. These
can be explored with the CodecDemoMorph, which accepts dropped
(new-style) sound tiles, then compresses them, plays them back, and
finally returns them to their original state. Since some of these are “lossy”
algorithms (i.e., some sound quality is lost in favor of better compression),
this gives you an opportunity to explore the sound quality tradeoffs of
different algorithms.

3.3 MIDI Support
MIDI is the Musical Instrument Digital Interface. It is a hardware and
software protocol which defines how to get different instruments to
communicate with one another, so that different keyboards, MIDI guitars,
drumpads, and other instruments can talk to one another and be easily
controlled. MIDI files (typically ending in .midi or .mid) are found in
many repositories on the Internet.

Squeak can play and manipulate MIDI files. The easiest way to open
up the MIDI ScorePlayerMorph is by selecting a MIDI file in the
FileList then playing it as MIDI from the yellow-button menu. The
ScorePlayerMorph (left side of Figure 14) lets you see all the tracks in the
MIDI piece and the textual description of what instrument is in the track.
Each track can be muted, panned from left to right, and have its volume
changed.

A Piano Roll representation of the MIDI score can be generated from
the ScorePlayerMorph. The Piano Roll representation shows each track
as a separate color, where each note is a line segment (right of Figure 14).

20

Multimedia Nuts-and-Bolts

The vertical position of the line segment indicates the pitch of the note,
and the length indicates the duration. The vertical red line is a cursor
indicating the current position in the song.

The Piano Roll notation allows for manipulation of the song and the
representation. Red button clicking in the piano roll opens up a menu that
allows you to change the view (e.g., contract or expand time) or to open a
keyboard (lower right of Figure 14) for inserting new notes into the score.
By yellow button clicking and dragging over the notes, notes can be
selected, copied, and pasted.

Figure 14: MIDI Tools in Squeak

HistoricalNote: The Piano Roll notation in Figure 14 dates back to the
Twang music editing system built by Ted Kaehler for Smalltalk-72.

MIDI scores can be played several different ways in Squeak. The
default is to use the internal music synthesis classes. When using the
internal classes, each individual track’s instrument can be changed. In
Figure 14, they’re all set to oboe1. Clicking on the instrument name opens
a menu for changing the instrument, or even editing the instrument.

21

Multimedia Nuts-and-Bolts

Figure 15: EnvelopeEditorMorph on Oboe1

When you edit the instrument, you can change its envelopes (Figure
15) or even add new envelopes. Envelopes can modify the volume, pitch,
or other parameters of the sound as it’s being generated. For example, in
Figure 15, the oboe1 sound increases its volume sharply as it’s first being
generated (note the first vertical bar, which can be adjusted) called the
attack, then held for the length of the note (sustain), then dropped as the
note decays. By clicking and dragging the EnvelopeLineMorph (a
subclass of PolygonMorph), you can make changes like have the
volume drop during the sustain for a warble effect. The editing label is
actually a pop-up menu for choosing or adding a different envelope. The
keyboard beneath the editor lets you test the sound as you edit it. The
control-click menu on the EnvelopeEditorMorph allows you save your
new instrument.

The MIDI player also allows you to play the score through an external
MIDI device or a platform-specific software MIDI synthesizer. (Access to
the platform-specific software MIDI synthesizer is currently only available
for Macintosh and Windows systems, though all the code is available to
port it to other platforms.) The <> button on the ScorePlayerMorph
pops up a menu for choosing what synthesizer you wish to use. If any
software synthesizers are available (e.g., via Apple QuickTime), they’ll
appear as an option, and the MIDI player will output through the selected
one. If you choose an external MIDI synthesizer, the controls on panning,
volume, and instrument selection are ineffective.

CautionaryNote: If you tell the ScorePlayerMorph to output to an
external MIDI synthesizer, but you don’t actually have one, you can cause
your system to hang. The timing access for an external MIDI interface is
written at a low-level which can’t be interrupted from Squeak. If the
external interface isn’t available, your system will hang waiting for it.

22

Multimedia Nuts-and-Bolts

It is possible to input MIDI from a keyboard or other device. The
MidiInputMorph will let you input MIDI and map it to a synthesized
voice. There isn’t built-in support to do anything else with MIDI input
other than simply playing it, but the classes are there to create more
sophisticated tools that blend MIDI input with other sound tools.

3.3.1 MIDI Support Classes
The classes to support MIDI in Squeak are rich and well-designed. A
MIDIFileReader reads a MIDI file (which must be in binary mode, as
opposed to the default character mode). The MIDIFileReader can
generate a MIDIScore with the asScore conversion message. A
ScorePlayer can play a score on the internal MIDI synthesizer, by
default. The below workspace code will play a given MIDI file (here, with
a Macintosh path and filename).

f ← FileStream fileNamed:

'MyHardDisk:midi:candle.mid'. "Open the file"

f binary. "and make it binary."

"Read it as MIDI and convert it to MIDIScore"

score ← (MIDIFileReader new readMIDIFrom: f) asScore.

f close. "Close the file"

"Open a ScorePlayer"

scorePlayer ← ScorePlayer onScore: score.

scorePlayer reset. "Reset it to start playing."

scorePlayer resumePlaying. "And start it playing."

Access to external MIDI devices involves some extra classes. The
SimpleMIDIPort class is used as the interface to the external MIDI
output devices. The class MIDISynth is used to handle input from
external MIDI devices. The below variation of the workspace code asks
the user for an external MIDI port, then plays the MIDI score through that.

f ← FileStream fileNamed:

'MyHardDisk:midi:candle.mid'. "Open the file"

f binary. "and make it binary."

"Read it as MIDI and convert it to MIDIScore"

score ← (MIDIFileReader new readMIDIFrom: f) asScore.

f close. "Close the file"

 "Open a ScorePlayer"

23

Multimedia Nuts-and-Bolts

scorePlayer ← ScorePlayer onScore: score.

 "Ask the user where to send the output: External vs.
Platform-specific internal"

portNum ← SimpleMIDIPort outputPortNumFromUser.

"Tell the scorePlayer to use this MIDI port."

scorePlayer openMIDIPort: portNum.

"Reset it to initialize, then start playing."

scorePlayer reset.

scorePlayer resumePlaying.

CautionaryNote: While playing around, it’s possible to get your external
MIDI ports into an odd state, e.g., where some are opened but you’ve lost
an object reference to close them. SimpleMIDIPort closeAllPorts is
usually effective for putting everything back into a usable state.

Exercises on Sound
7. Create a new kind of instrument by editing the envelopes of the oboe
sound. Can you express what each of the different envelopes does to the
sound?

8. Find a piece of music and transcribe it into Squeak. (Best if you have to
play multiple voices at once.) Try different orchestrations (different
instruments) for the piece.

9. Use the Sonogram and see if you can figure out the wave pattern
difference between each of the vowel sounds. Is it the same for you and
for someone else?

10. (Advanced) Use the Wave Editor and sample an instrument. (There
are directions on the Squeak Swiki.)

4 Networking
Squeak has been enhanced since the original Smalltalk-80 with good
support for networking. Since the advent of the Web, a lot of multimedia
work has focused on making things available on the Internet and using
material that is out there. Thus, good networking support becomes an
important part of a multimedia toolbox. FTP, HTTP, mail protocols
(SMTP and POP), and IRC are all supported. User interface tools exist for
all of these in Squeak.

24

Multimedia Nuts-and-Bolts

4.1 User Interfaces for Networking
Scamper is Squeak’s web-browser (Figure 16). You open it from the
Open… menu and choosing Web browser. It can handle basic HTML,
forms, and images (in GIF, JPEG, and BMP formats). It has no support
for Java or JavaScript. As of Squeak 2.7, there is no support for tables nor
frames.

Figure 16: Scamper Web Browser

The basic FileList is also an FTP client (Figure 17). If you click all
the way up to the top level of the directory tree, you see not only your
mounted disks, but known FTP servers (preceded by “↑” in the directory
contents pane). You can add servers by choosing Add server… from the
yellow button menu in the directory pane (the one containing []).

Figure 17: FTP Servers in FileList

Celeste is Squeak’s email client (Figure 18). Celeste speaks POP and
SMTP mail protocols. It can filter messages automatically into mailboxes
based on subject, sender, or custom queries. It can import or export
mailboxes from Eudora or UNIX formats.

25

Multimedia Nuts-and-Bolts

Figure 18: Celeste the Email Client

4.2 Programming Network Access
Squeak’s networking support provides low-level and high-level access. At
the low-level is the basic Socket class. Sockets are a standard
mechanism for creating Internet connections across many platforms.
Squeak’s sockets can support TCP/IP and UDP access.

CautionaryNote: While working with networking, some tools may
assume that a network connection already exists. If one hasn’t been set up,
use of the tool may generate an error. To initialize the network, simply do
Socket initializeNetwork.

Subclasses of Socket provide more conceptually high-level access
for different protocols. SimpleClientSocket provides the basic
mechanism for accessing a variety of protocols. POPSocket and
SMTPSocket provide class methods that demonstrate how to read and
write email.

FTPSocket provides access to FTP servers, though it’s typically
used through ServerDirectory that provides an abstraction for dealing
with internal files, FTP, and HTTP access in a similar way. Workspace
code that stores and retrieves from an FTP server follows:

ftp ← ServerDirectory new.

ftp server: 'cleon.cc.gatech.edu'. "host"

ftp user: 'guzdial'.

ftp password: 'fredflintstone'.

ftp directory: '/net/faculty/guzdial'.

ftp openFTP.

26

Multimedia Nuts-and-Bolts

ftp putFile: (FileStream fileNamed: 'myfile') named: 'remotefile'.

ftp getFileNamed: 'remotefile' into: (FileStream fileNamed: 'myfile-
downloaded') open.

ftp quit.

HTTPSocket provides several class methods for directly accessing
material on webservers. The most general access method is with the class
method httpGet: that takes a URL as a string. What it returns is a
RWBinaryOrTextStream, a very general stream that can be interpreted
as text or binary (e.g., for images) as you choose. See the class methods
httpShowPage: to see how to grab the text out of the returned stream,
and httpGif: and httpJpeg: show how to grab a GIF or JPEG image out
of the returned stream.

Scamper has many supporting classes that enable it to interpret the
network intelligently. HTMLParser has a class method parse: that
accepts an HTML document and returns an HTMLDocument.
HTMLDocument, in turn, can answer conceptual entities of itself, such
as head and body. The class Url and its subclasses (e.g., BrowserUrl)
know how to parse themselves and retrieve their contents. The class
MIMEDocument knows about MIME types, and can store a document
and its type. These classes are designed to be reused in new network
applications.

4.3 Web Serving with PWS
Squeak also comes complete with a webserver, the Pluggable WebServer
(PWS). The class PWS serves two different roles between its class and
instance method sides (which isn’t a particularly good object-oriented
design). On the class methods side, it implements a webserver. On the
instance method side, it represents a specific request to the webserver. The
PWS was originally written by the author, based heavily on a Squeak-
based webserver by Georg Gollman.

PWS can work simply as a basic webserver. You must modify the
class method serverDirectory in the class ServerAction so that it
returns the path to the directory where you will serve files. (Be sure that
the last character of the path is your platform’s path separator character.)
You can then execute the below:

 "Make the default server action be serving a file."

PWS link: 'default' to: ServerAction new.

"Start serving"

PWS serveOnPort: 8080 loggingTo: 'log.txt'.

To stop the server, execute PWS stopServer.

27

Multimedia Nuts-and-Bolts

With the server running, any HTML, GIF, or other files stored in your
server directory are available on the Web (assuming that your computer is
on the Internet). That is, if you create an HTML file named myfile.html
and place it in the directory that you specified in serverDirectory, any
browser in the world can access that file via http://your-machines-
address:8080 /myfile.html. For the author, this might be
http://guzdial.cc.gatech.edu:8080/myfile.html (You can get your
machine’s address by PrintIt on NetNameResolver
nameForAddress: (NetNameResolver localHostAddress)
timeout: 30). The 8080 indicates the port number of the Web server.
Most webservers serve from port 80, but many systems (notably,
Windows NT and UNIX systems) require the user to be an administrator
to create a webserver on port 80. Any user can use ports above 1024 on
just about any system.

If PWS could only serve files it would be only mildly interesting, but
it’s more powerful than that. You can also generate information
dynamically and serve it via PWS, the way that you can with CGI scripts
on other webservers. There is a collection of examples of PWS interactive
web pages, including two different collaboration tools, at
http://guzdial.cc.gatech.edu/st/server.tar

To use these tools, unpack the archive, and move all the files into
your server directory (e.g., the folder swiki should be within your server
directory). You can use PWS initializeAll to install all the examples.

Several of the examples have to do with supporting different forms of
collaboration on the Web. One of the examples is a simple chat page. Go
to the address http://your-machines-address:8080/chat.html to conduct a
chat in HTML. The page refreshes itself every so often, so other visitors
to the same page will see your comments and their own. Another one is a
more structured comment space: Try http://your-machines-
address:8080/comment.Squeak

The most powerful of these examples is the Swiki. Ward
Cunningham (who invented CRC cards with Kent Beck) invented a kind
of website called the WikiWikiWeb. WikiWiki is Hawaiian creole for
“quick.” The quickest way in the world to create a website is to invite
everyone on the Internet to edit and create pages on your website. The
original WikiWikWeb is available at
http://c2.com/cgi/wiki?WelcomeVisitors Swiki is a Squeak interpretation
of Ward’s idea, thus, a Squeak Wiki or Swiki. The Squeak Swiki is at
http://minnow.cc.gatech.edu/squeak.1

To create a Swiki (assuming that the examples files are downloaded
and installed), you start by creating a folder in your server directory. You
should make the folder’s name a single word (no spaces) to make it easier
to access, like myswiki. Now, set up the Swiki with SwikiAction setUp:

28

Multimedia Nuts-and-Bolts

‘myswiki’ (replacing myswiki with the name of your folder). Just before
you start up your server, you should execute SwikiAction new restore:
‘myswiki’. Your Swiki will be available at http://your-machines-
address:8080/myswiki.1

4.3.1 Programming the PWS

The purpose for the PWS was to provide a simple mechanism for building
new kinds of interactive Web applications. PWS makes it simple by
providing some pieces for making Web applications simple and by
supporting embedded Squeak. This section introduces both of these.

You write a PWS application by defining an object that responds to
the message process: with an argument of a PWS instance (that is, a
request to your webserver). Let’s say that you define a class named
SimpleExampleAction (with no instance variables, and it can just be a
subclass of Object) and gave it an instance method like this:

process: aRequest

"Return a code indicating success"

aRequest reply: PWS success.

"Now, tell the browser that we're giving it HTML."

aRequest reply: PWS contentHTML, PWS crlf.

"Send it the HTML. Note the commas concatenating generated stuff from
literal text"

aRequest reply: '<html>

<head><title>A Simple Example</title></head>

<body>The time is: ',(Time now printString),'

<p>The date is: ',(Date today printString),'

<p>The URL you used to get here was: ',(aRequest message printString),'

</body></html>'

What this method does is:

• Tells the connecting browser that the connection was successful. The
request object knows how to reply to the browser, and PWS success
is the appropriate code. (As opposed to PWS notFound that tells the
browser that it has a bad URL.)

• Tells the browser that what’s being returned is HTML (PWS
contentHTML) and returns a final carriage-return-line-feed (PWS
crlf) to end the header.

• Returns the HTML to the browser. The HTML above happens to
generate some elements on-the-fly, like the time, the date, and the

29

Multimedia Nuts-and-Bolts

URL used to reach this method (message). The PWS request
instance also responds to the message fields which returns a
dictionary of all the HTML form elements that may have been posted
to the URL, already all parsed out into easily accessible elements. This
makes creation of interactive Web applications easy.

To install this application as a URL, we have to link it to PWS with a
keyword. The keyword is the name of the application to be included in
the browser. PWS link: 'example' to: (SimpleExampleAction
new) would work, so that http://your-machines-address:8080/example
would trigger the above method (Figure 19). All the PWS linkages are
stored in its actions dictionary.

Figure 19: Scamper view of SimpleExampleAction

The class that implements basic file serving in PWS is
ServerAction. It is designed to be easily overriden by subclasses to
implement specific serving features. One of these subclasses is
EmbeddedServerAction. Before returning files referenced through
instances of this class, the action first asks HTMLformatter to evaluate
embedded Squeak in the file. Anything enclosed in the made-up tags <?
and ?> is treated as Squeak code, evaluated, and the returned result is
included in the returned file.

The SimpleExampleAction can be done with embedded Squeak
like the below. This example is included in the examples and is available
as http://your-machines-address:8080/embedded/Sample.html

 <html><title>Sample Embedded Page</title>

 <body> <h2>Welcome</h2>

<p>Today is <?Date today printString?>

<p>Now is <?Time now printString?>

</body> </html>

Using embedded Squeak and accessing forms input via the fields
message, it’s easy to create a one file interactive application. The variable
request can be accessed from within embedded Squeak to get the actual

30

Multimedia Nuts-and-Bolts

PWS instance. The below file (http://your-machines-
address:8080/embedded/Factorial.html) prompts you for a number, and
then returns the factorial of that number. Note that fields returns nil if no
form data is available (like when first visiting this page), and returns a
string for everything else (which is why asNumber is needed before
computing the factorial). Specifying the same file as the action for the
POST means that this same file will be served again when the submit
button is pressed.

 <html><title>Factorial Calculator</title>

<body>

<form method="POST" action="factorial.html">

<p>Number to compute:

<input type=text name="number"

value="<?request fields notNil

ifTrue: [request fields at: 'number' ifAbsent: ['0']]

 ifFalse: ['0']?>"

size=10 maxlength=10>

<p><input type=submit name="action" value="Compute Factorial">
<hr>

<p>Factorial

<p> <?request fields notNil

ifTrue: [(request fields at: 'number' ifAbsent: ['0'])

asNumber factorial]

ifFalse: ['nothing yet']?>

</form> </body> </html>

Exercises with Networking
11. (Advanced) Modify Scamper so that each visit to a page generates a
thumbnail of the page so that clicking on the thumbnail opens the same
Web page. This creates a new kind of web history.

12. (Advanced) Use the networking primitives to create MIDI-at-a-
distance. Input MIDI from a keyboard, send it across the network to a
client, and play the sound on the client’s computer.

13. Use the Web access methods in HTTPSocket and the TextMorph’s
seen earlier to create a personal newspaper. Generate a well-formatted

31

Multimedia Nuts-and-Bolts

newspaper of your user’s favorite websites, with multiple columns and
images.

5 New Media in Squeak
Squeak is also being used to invent new media forms unique to Squeak.
These media are being invented as steppingstones toward the Dynabook
vision of personal dynamic media. Two of these media, SqueakMovies
and BookMorphs, are presented in this section. Both are fairly new and are
still in development, but they point toward exciting new areas for
inventing media in Squeak.

5.1 SqueakMovies
SqueakMovies are not as sophisticated as MPEG or QuickTime movies
(though they may be in their final form). But they do allow you to easily
capture activity in Squeak. Used in combination with things like
Wonderland, they form a fascinating way of exploring animated
movies—using Wonderland to script, and SqueakMovies to capture and
deliver the final presentation.

To create a movie from Wonderland, first create one with
Wonderland new then load up an actor.

w makeActorFrom:
'MyHardDisk:Squeak:Objects:Animals:Snowman.mdl'

The below code (to be executed in a Wonderland script editor) creates
a movie named snowman.movie where the snowman wanders around in a
circle. There was an important problem that had to be solved to make this
code work. Wonderland creates intermediate steps in an animation, and
schedules them over some period of time to create a pleasing effect. But to
capture the Wonderland script to movie, it was important to get the
animation to occur immediately, in order to capture the movie. The tricks
were (a) to tell Wonderland that the duration was rightNow and (b) to get
the Morphic World to update the Wonderland by forcing it to
doOneCycle.

| frame1 |

out ← FileStream newFileNamed: 'snowman.movie'.

out binary.

“Create a header”

frame1 ← (Form fromDisplay: (cameraWindow bounds)).

out nextInt32Put: 22. "Treat as Magic number for now"

out nextInt32Put: (frame1 extent x).

32

Multimedia Nuts-and-Bolts

out nextInt32Put: (frame1 extent y).

out nextInt32Put: (frame1 depth).

out nextInt32Put: 44. "frames"

out nextInt32Put: 100000. "Time in microseconds between
frames"

(7 to: 32) "Padding"

do: [:i | out nextInt32Put: i].

“Now, do the walking and turning, and create frames.
Each frame is a Form snapped from the Display within the
cameraWindow’s bounds. Forms understand writeToMovie:”

1 to: 22 do: [:count |

snowman move: forward distance: 0.3

duration: rightNow.

World doOneCycle.

(Form fromDisplay: (cameraWindow bounds))

 writeOnMovie: out.

snowman turn: right turns: 0.3

duration: rightNow.

World doOneCycle.

(Form fromDisplay: (cameraWindow bounds))

 writeOnMovie: out.

].

out close. “End the movie”

To view the movie, find it in a file list and use the yellow button
menu to open it as a movie (Figure 20). (Click on the rightside hollow
circle to get all the controller buttons seen in Figure 20.) The movie player
can be used to add a soundtrack to a movie. Choose Add soundtrack from
the menu button (<<>>). A list of WAV and AIFF files in your current
directory will pop-up. Pick one, and when you play the movie, the sound
will be played at the same time.

33

Multimedia Nuts-and-Bolts

Figure 20: Squeak Movie Player

You can synchronize a movie with MIDI in an even more interesting
manner. The thumbnails that you can generate from a movie frame are
actually synchronization tools. If you open a Piano Roll for drag-and-drop
(from its red halo menu), you can drop the thumbnails at key points in the
music. When the MIDI score is played, the movie will make sure that the
right frame is showing at the right point in the score (Figure 21).

Figure 21: Synchronizing MIDI with a Movie (note thumbnails at bottom of Piano
Roll)

5.2 BookMorphs
Apple’s HyperCard was a really powerful tool, in that it allowed anyone to
easily create small applications. These applications could contain text,
buttons, and link to other kinds of media. In that way, HyperCard took a
step closer to a Dynabook.

The basic metaphor of HyperCard was a stack of pages. Each page
could contain different elements, and a basic structure for a set of pages
could be defined in a shared background. Users could use HyperCard

34

Multimedia Nuts-and-Bolts

stacks as notebooks or libraries (storing things on different pages with a
common structure in the background), as slides shows (with transitions
and sounds between pages), or even as more complex applications by
scripting (programming in a simple language) the stack.

Figure 22: A Simple BookMorph

The HyperCard stack maps to Squeak through the BookMorph
(Figure 22). Like HyperCard stacks, BookMorphs consist of
pages—PasteUpMorphs. Like HyperCard, basic structures can be stored
on the book prototype (any page can be made the prototype by clicking on
the sold circle menu button) and are then available on every new page.
Like HyperCard, transitions and sounds can be defined between pages.
(BookMorphs also offer a PowerPoint-like page sorter, which is available
from the same solid circle menu button.)

Unlike HyperCard, a BookMorph can hold any morph, so it can be
dynamic and well-structured. Embedded in a BookMorph,
ClockMorphs update, BouncingAtomMorphs bounce, and live graphs
can change in response to updates in Web-based data or queries from
users. Simulations, construction kits, and even whole programming
environments can be embedded inside a BookMorph.

BookMorphs are designed to be easily saved and loaded from disk
or network. The menu item Send all pages to server from the circle button
menu will let you save your book. Choose Use page numbers when
prompted, and then provide a URL for the book. BookMorphs know
how to deal with ftp:// and file:// URLs. Your book will be saved with a
filename ending in .bo for the book index and .sp1, .sp2, and so on for the
pages.

You can open a book from a FileList by using the yellow button menu
with the book index file is selected (from disk or FTP). Or, from a
workspace, you can execute BookMorph grabURL: 'file://My Hard
Disk/mybook.bo' with any URL. The BookMorph is smart about

35

Multimedia Nuts-and-Bolts

managing memory and pages. Each page is not loaded until it is needed,
and older pages are purged as they are no longer needed.

A BookMorph becomes a powerful mechanism for creating
multimedia documents in Squeak and sharing them with others. Ted
Kaehler, who worked on HyperCard and built most of the BookMorphs,
talks about using them to write active essays—documents that have text
and graphics, but where some illustrations are active, dynamic,
explorations of the concepts in the book. In this way, the BookMorph
becomes an exploration space for Dynabook ideas.

6 Making the Dynabook in Squeak
Despite the rapid pace of this chapter and the many forms of media
supported in Squeak, there is much more in Squeak than is discussed here
that moves it toward a Dynabook—and even more that needs to be built
and explored yet. Some of the additional features of Squeak 2.7 that we’re
not discussing but are relevant include:

• Support for high-resolution tablets, as in the original Flex. (See class
methods in Pen for these.)

• Support for writing recognition (see class CharRecog).

• Support for language understanding (see class WordNet).

• Support for exceptions in order to create more robust systems (see
class Exception).

• Support for extending the VM and creating low-level primitives
through Squeak. (See the class category Squeak-Plugins for
information on this.)

Even then, there’s much more to be done before a Dynabook is
realized and many questions to be answered. While the basic functionality
for a Dynabook is emerging in Squeak, it’s not all in a form that any user
can use. Reading and writing are skills that most people learn, and pen-
and-paper can be used by just about everyone. A Dynabook should enable
people to read and write personal dynamic media, and the creation tools
should be as easy (and omnipresent) as pen-and-paper.

But even once all that functionality is available, there is a question of
what’s possible and how it will be used. In books, we have standard
features like page numbers and table of contents. What will the equivalent
standard practices be in computer-based media? Web pages are slowly
developing standards (e.g., the common navigation links across the left
hand side or the top of a page), but the Web is not nearly as dynamic as
the Dynabook may become.

It’s commonly stated that Thomas Edison invented the motion picture
but D.W. Griffith invented film. The distinction highlights the difference

36

Multimedia Nuts-and-Bolts

between the technology and its use. Edison created the tools with which
Griffith created editing and filming techniques that are in common use
today in everything we see on television or in the movies. This chapter
highlights some of the technologies that can lead to the creation of a
Dynabook, but these only suggest the potential available in its use. How a
Dynabook is used and what can be done with it are important questions
when considering what the impact of personal computers can be.

References
The Swiki on Swikis is at http://pbl.cc.gatech.edu:8080/myswiki.1

A new kind of Swiki is available at http://seaweed.cc.gatech.edu:8080/

