
Introduction
The goal of this book is to help the reader to create multimedia projects in
Squeak. The reader might be a student somewhere—that’s probably the
typical reader for this book, so “student” will get swapped for “reader” in
many places. The reader might just be someone interested in Squeak.

In any case, there is an assumption that you’re trying to do projects,
serious efforts requiring pages of code. This book provides the
information needed to get going with objects, user interface, and
multimedia in Squeak. If you’re working on a project, you are using
Squeak, and you’re actively trying to figure things out. This book gives
you the tools to do that.

The structure of this book is aimed at the undergraduate computer
science student, though the content is more generally on multimedia
projects in Squeak. The below sections explain how the structure and
content of the book was designed.

1 Approach of the Book
When American Universities were invented in the late 1800’s, they were
designed to be a mixture of the English College with its focus on
undergraduate education and the German University with its focus on
research. The goal was for the research to motivate, and even inspire, both
students and faculty to be better learners and teachers. While this works in
the best case, it has most often led to a higher priority on research than on
teaching. (For a recent analysis of this tension, see Larry Cuban’s How the
Scholar Trumped the Teacher, Columbia Teacher’s Press, 1999.)

The approach of this book is to be the reverse, hopefully, closer to the
aims of the original inventors of the American University system. The
pedagogy of this book is based on research in the learning sciences on
how people learn. The content of this book is based on the research of me
and my students developing collaborative multimedia in Squeak. The case
studies in the latter half of the book are real projects that we designed,
implemented, and then evaluated with real users to test the usability and
effectiveness of our software.

While the case studies will probably not raise eyebrows, the structure
and approach of the book may be uncomfortable to some. It may even
seem intuitively wrong. Our intuitions are based on our experiences, in the
classroom as well as in our daily life. But science is based on
measurement. Science has come up with many ideas that seemed
intuitively wrong, like disease being caused by small things too small to
be seen by the naked eye, and that all objects fall at the same rate. As the
methods of science have been applied to learning, similar non-intuitive
lessons have been learned.

2

Introduction

I attempted to apply the lessons about learning to the design of this
book. I recognize, though, that research’s lessons are not obvious—they
require interpretation. My interpretations may be controversial, and even
outright wrong. The responsibility for these interpretations is my own, not
the original researchers.

1.1 Start from Where the Students Are
There is a school of thought that says that students should be taught the
abstractions necessary for proper execution in a domain before they are
taught the actual execution. The argument is that the students’ minds are
then prepared to learn the “right” way to do things. This argument has
been used to push for theory ahead of practice, design before
implementation, and learning algorithms and development methodologies
before actually doing any programming.

One of the unfortunate realities of our cognitive system is that we’re
very bad at transferring knowledge from one domain to another, even
when they’re tightly connected. We’ve known since the 1920’s that
students develop “brittle knowledge” (Alfred North Whitehead) that can
be applied for a given exam or given course, but seems to disappear
outside of the original class. The formal study of “brittle knowledge”
arguably began in mathematics education research where students were
found to become experts at one kind of equation, but adding in a single
extra term totally confused them. The phenomenon was also noted in
physics students, who could get A’s on exams with tight explanations of
acceleration and energy in a thrown ball, but who would explain outside of
class that a ball falls because the atmosphere pushes on it. In my own
research, I’ve been amazed to find that Engineering students seem to
forget almost all of their Calculus when they get to the Junior and Senior
years.

If students do not see the connections between areas of knowledge,
then they won’t transfer the knowledge. If they do not understand what
they’re learning, they can’t see the connections. But if students do
understand material, if they can see lots of relations between what they’re
learning and what they’ve known before, the knowledge is more likely to
transfer and even be retained longer.

Case-based reasoning, one theory for how our cognitive systems
work, has an explanation for all of this. As information comes into our
mind, it becomes indexed. When a new event appears, we use our indices
to figure out if we’ve ever seen anything like this before. If we do, then a
connection is made. If our indices are developed well, we can match
things as being similar. But if we learn things with indices that say “This
is a boring fact for a course” as opposed to “This relates to design of
programs,” then we don’t apply the information appropriately. It is
possible to re-index things later, and it is possible to learn abstract things

3

Introduction

with appropriate indices, but it’s easier to learn new things as variations of
known things, and then extend the indexing schemes.

The goal of connecting to what students already know is meeting the
students where they are. While a student can memorize and even learn to
reason with abstract material, this is a sign of the intellectual capabilities
of the student, not the usefulness of the material. The real test is whether
the students can use the knowledge later. The odds of having usable
knowledge are improved if the material is presented when it makes sense
to students and can easily be related to knowledge that the students already
have.

Academics, researchers, and other smart people often disbelieve this
point. They reflect on their own learning and note that they often prefer to
get the abstractions first. There are several responses to this kind of
reaction. First, self-introspection is not necessarily the best way to come
up with lessons about learning. People do fool themselves. (For example,
people often believe that shortcut keys are faster than menus, but all
explicit measurements show that mousing over menus is always
faster—see Bruce Tognazzini’s Tog on Interface 1992 Addison-Wesley
for a review of this research.) But perhaps the more significant response is
that smart people are already smart. They’ve picked up all kinds of
concrete and abstract knowledge already. They’re excellent learners who
know how to figure out connections to new knowledge. As my advisor,
Elliot Soloway, likes to say, “20% of the people will learn whatever you
do to them. It’s the other 80% that you have to worry about.”

For these reasons, the order of events in this book is concrete and
easily understandable first, abstract and more general later.

• Squeak is first introduced as being like other languages that students
might know, then the new and original features are introduced.

• Two chapters on Squeak programming appear before the chapter on
design of object-oriented programs.

• Technical details of building user-interfaces are presented before
interface design principles.

1.2 Learning involves Testing and Failure
Noted cognitive scientist Roger Schank has promoted the importance of
“failure-based learning.” If you’re always successful, you don’t learn
much. But after you’ve failed, you’re in the perfect position to learn a lot.
Someone who has just failed is now interested in reading, in exploring
theory, and in engaging in inquiry in order to understand the failure and
how to avoid it next time. In order to fail, you must face a “test” of some
kind. The test doesn’t have to be paper-and-pencil. It doesn’t have to be
formal at all. But if there isn’t an event that tests your knowledge and

4

Introduction

provides the opportunity to fail, then the failing and learning will never
occur.

Computer scientists are well-familiar with this process of testing,
failing, and learning from it. We even have invented a nice word for it:
debugging. Debugging is such an important part of computer science that
computer scientist and educator Gerald Sussman has been quoted as
saying that “Programming is debugging a blank sheet of paper.”

But when it comes to user interfaces, computer scientists tend to shy
away from a real test. The buttons get pushed, and the menus get dragged,
and success is declared. However, the design of the user interface is based
on what the user wants, not whether the buttons can be pushed. To really
test the design, one has to face the users. This is called user interface
evaluation.

Students cannot learn design without evaluation. Otherwise, it’s
almost impossible for the design to fail, and thus learning cannot occur.
The evaluation does not have to be all that sophisticated. The “discount
usability methods” of Jakob Nielsen and others work because the real
problems of user interface design tend to be right up front and pretty easy
to see.

The chapter on user interface design includes sections on evaluation.
But more importantly, each of the case studies in the back of the book
includes an evaluation with real users. Some of the evaluations are
survey-based, others are observational with interviews, and still others use
recordings of user events to figure out what happened. In every case,
there is some testing of the design assumptions.

1.3 Generation and Inquiry, not Transmission
Even though people speak of “transmitting” or “delivering” material in a
classroom, that isn’t how learning works. Cognitive science has known
for decades now that all real learning is constructivist: It’s an active
process of figuring things out and relating it to other knowledge. The goal
of education is to motivate students to think about things, and thus, learn.

The goal of a book, then, is not to deliver facts, but to provide
methods of generating knowledge and fuel for students’ inquiry. A list of
phrases to be memorized doesn’t lead to learning. But if a book explains
how to do something, and then provides some particularly interesting
somethings to do, then the setting for learning is prepared.

There are sections of this book explicitly labeled “Generating”
sections. These sections are meant to show how to dig into Squeak, how to
study the exercises, how to build your own things in Squeak.

The rest of the book is meant to fuel inquiry, that is, students’
exploration of things of interest. Inquiry can take lots of forms in lots of

5

Introduction

different directions. The goal for this book is to provide starting places for
many of these: From a historical or technical perspective; from object-
oriented design or user interface design; from building objects to building
interfaces.

2 Content of the Book
This is a book about using Squeak to build multimedia programs. It is not
really a general book about object-oriented design or multimedia design.
Rather, it’s meant to be a book a particular programming language that has
a rich history and is particularly well suited to use in computer science
education. But in order to build multimedia programs in Squeak, students
need to know:

• How to program in Squeak, from both a language and an environment
perspective;

• How do design programs for Squeak;

• How to build user interfaces in Squeak;

• How to design and evaluate user interfaces in Squeak;

• How to do multimedia in Squeak;

• And lots of examples of how to do it.

In short, that’s the content of the book.

The book is particularly aimed at the early-to-intermediate
undergraduate student. There is an assumption here that students already
know some programming language, but little else. The goal is to get
students, as quickly as possible, producing multimedia applications in
Squeak. It serves as an excellent lead-in to more advanced classes in any
of these subject areas.

At Georgia Tech, we have been teaching a course on material like this
for over five years. It has met with great success. This book is based on
the notes for that course. I hope that this book will be as successful in
other classes, and for you the reader, however you come to this book.

