
Chapter 6

Designing User Interfaces in Squeak
As mentioned in the last chapter, there are basically two challenges to
builder interfaces for users:

• How do you create user interface software that you can maintain well,
that is, it is easy to change pieces without impacting everything?

• How do you create user interfaces that people can actually use?

The last chapter addressed the first point. This chapter addresses the
second. This chapter is not a replacement for a human-computer interface
design class. User interface design is a challenging and complex task,
perhaps even more an art than a science. The goal of this chapter is to
provide some insights into process and issues. You now know how to
build user interfaces. You should give some thought how to do it well, that
is, how to avoid annoying your users. The most important point of this
chapter is the heading of the very next section.

1 Know Thy Users for They Are Not You
The most important thing to learn about user interface design is that the
user for whom you are designing is almost always not you. The real users
may not even be like you. This means that, whenever there is a question
about what to put in the user interface or what the users want, you are not
the best authority on the subject. In fact, you may be the worst.

Most users are not computer programmers. They don’t know anything
about how computers work—nor do they want to. You, on the other hand,
know a lot about how computers work and you know how to program
them. Your expectations and desires are very different than most users.

On the other hand, users other than you know lots of things that you
don’t. Users know their jobs and the information needed to know their
jobs. Let’s take a concrete example. You wouldn’t presume to know
anything about how to do open heart surgery, and you wouldn’t expect a
medical doctor to know anything about object-oriented design. So, when
a question arises on how best to organize or search for drugs in a
prescription database to be used by medical doctors, who’s better to
answer the question: You who know databases, or the doctor’s who know
their jobs? Obviously, it’s the doctor’s.

At conferences on user interface design, you can find people
wandering around with badges saying “Know thy users for they are not
you.” This is one of the most important maxims of user interface
designers, and is probably the hardest lesson to learn in the field. You, as a
prospective interface designer, know computers, and you’ve used lots of
interfaces. When a question arises about how to do something, you feel

2

This is a Chapter Title

like you have lots of experience and knowledge to draw from. And you
do—but it’s probably wrong for the users. Your users are not you.

1.1 How do you decide between user interface alternatives?
The question of who the user is and what the user may want arises when
there is more than one way to do something. When you have alternatives
to choose between, the deciding factor is what’s best for the users. 90% of
the time, the users can tell you exactly what is best for them. Most users
are adults who know their jobs and know what they want.

There are some times, however, when the user does not know what
she wants. Maybe it’s because the user has never used a computer tool for
the given task. Maybe because the task, on the computer, will be
completely new. In that case, you will have to make the choice
yourself—but you do it from understanding of the users’ tasks. What is it
that users will have to do?

Again, the user is not you. You cannot know what the users’ tasks are
until you talk to users, watch them, and get to know them. Your perception
of the task can be very different than what the users’ perception may be.

Consider two interfaces for a clock. The first is the basic ClockMorph
built into Squeak (Figure 1). The second is the Clock user interface that
we built in the previous chapter (Figure 2. Which one is better for the
user? Which one is better for the user’s tasks with a clock? We’ll argue
before the end of the chapter that Figure 2 is very possibly the worst
possible user interface for a clock.

Figure 1: ClockMorph from Squeak

3

This is a Chapter Title

Figure 2: Clock User Interface from Previous Chapter

2 Understanding the User
The first question that you should always ask about a user interface that
you are being asked to design is “Who is my user?” Who is it that will be
using this tool?

There are lots of ways of modeling a user, including several formal
methods of what to ask the user about. The key issue is to match the users’
skills (and later, the task) to the user interface that you are going to design.
You want to figure out what the users can and cannot do, then make sure
that your interface allows the user to perform the task that he wants to
perform, within the user’s skill set.

Users’ skills are pretty hard to pin down, and sometimes you have to
ask questions that may not make much sense at first glance. You need to
ask users about what they know how to do as it pertains to your program.
Let’s consider some sample questions.

How old is the typical user? A graduate student at Georgia Tech once
developed a program to help first graders learn mathematics where the
very first screen was full of text instructions—which first graders were
incapable of reading. There’s a reason why video games in arcades go into
“demo mode” when not being used. Video games don’t come with
instruction manuals, and not all video game enthusiasts know how to read.
A “demo mode” gets around this problem.

On the opposite end of this question are the senior citizens who may
no longer be able to read small fonts nor may be able to manipulate a
mouse to click on a small target. As people get older, vision acuity often
fades, and hand-eye coordination may become more difficult. There are

4

This is a Chapter Title

technologies where this can come into play, such as the small fonts on
ATM’s or the fuzzy fonts on television-based Web browsers. If your user
population is very broad (e.g., a kiosk in the mall that anyone should be
able to walk up to and use), you must consider the limitations of each end
of your user age range.

What do your users know about? There are some terrific programs for
teaching physics which provide the user with all kinds of interesting
worlds to explore, for example, worlds where Hooke’s Law is invalid, or
when a different gravitational constant applies. Unfortunately, newcomers
to physics classes don’t know Hooke’s Law nor what a gravitational
constant is. For these students, the wonderful program is useless because
they can’t figure out what to do with it.

Terminology on menus, buttons, and help screens are only one place
where the users’ past knowledge plays an important role. There are other
programs where knowledge of a process is critical. For example, there are
programs where data must be prepared in some way before it can be
processed. If you don’t know what the order of operations is, you cannot
use the program.

A classic example along these lines is a spreadsheet. When you open
a spreadsheet application, what should you do? You have a blank sheet of
cells sitting in front of you. If the user doesn’t have prior knowledge of
spreadsheets, how could an interface help the user figure out what to do
first?

What does the user want to do? Perhaps this is the most important
question to ask a user, not just for the answer, but in the way that the
answer is phrased. If a medical doctor says that she wants to “Find all the
generics for suphedrine,” that tells you that she wants to “find drugs,” but
also, that she’s looking in terms of a specific medication that she already
knows. If you had created the user interface in terms of “Medications for
runny noses,” your interface would not only get in the way of the doctor
who already knows what medication she wants, but it would also be an
insult to the doctor who has already matched symptom to drug.

2.1 Understanding the Task
Asking what the user wants to do is one part of understanding the users’
task. The challenge to understanding the user’s task is that not all of it may
be explicit in what users’ say. As people become expert at their tasks, their
knowledge of the tasks becomes implicit. People say, “I don’t know how I
do it—my fingers seem to know.” Some of the users’ task you may have
to discover from watching them, or even just looking around where they
perform their task. Context of the task can tell you a lot.

Questions that the context might be able to answer include “When do
you perform your task? What do you need to do your job?” Some studies

5

This is a Chapter Title

of jobs like airport tower controllers have found that users use surprising
sources of information. In one study, airport tower controllers explained
their tasks in terms of computer monitors and paper forms, but when
observed, interface designers found that the tower controllers kept looking
out the window! A quick glance out the window told them more about
who was on the ground, how busy the terminals were, and where the most
open terminals were—far more quickly than hunting through the forms
and the monitors. This kind of observation pays dividends when it comes
to creating a new interface that actually does help the users with their jobs,
by providing them the knowledge that they really need.

Another important attribute of the task that the user may not be able to
tell you explicitly is how often they try to achieve various goals. For
example, users will often emphasize the time-critical and urgent aspects of
their jobs. “When X happens, I have to do Y and Z, immediately!” But
they may not tell you that X happens once a month. It is important to
support the users in their time-critical and urgent tasks, but it’s also
important that the urgent tasks don’t make the everyday, mundane tasks
easier.

Imagine a fire alarm that was so sensitive that just running by it would
fire off the alarm. That would certainly make calling the fire trucks as easy
as possible. However, just walking down that hallway would become
tricky, and you’d have to be careful not to go too fast, or to hold down the
“not a real alarm” button as you walked by. This would be an awful
interface since it would sacrifice the ease of everyday tasks for the ease of
unusual but urgent tasks.

3 Matching Users to Interface: Avoiding User Error
There are lots of ways constructing an interface. Various interaction styles
and widgets were introduced in the last chapter. A brief list includes:

• Buttons for clicking on, radio and checkbox buttons for selecting.

• Text areas

• Various kinds of direct manipulation, from drag-and-drop to resizing
windows

• Menu selections

• Dialog boxes with buttons, text areas, and such.

• Natural language

• Command languages like UNIX shell

How do you pick between these? Obviously, you use your knowledge
of the users and their tasks, but the match between users and interaction
styles may not be obvious. It is definitely true that not all matches make
sense.

6

This is a Chapter Title

For example, consider command languages as an interaction style.
For expert users, command languages are great. Users of Microsoft
Windows and Apple MacOS can’t hope to do as much with as few
keystrokes as a UNIX shell expert. The UNIX shell is just amazing for
providing a succinct and programmable interface. But UNIX shell for new
or casual (infrequent, logging on once every few days) users is a terrible
idea. (“What did rm do again?”)

On the other hand, expert users get frustrated when forced to use just
an iconic and menu-driven interface. They want the speed and flexibility
of shortcuts like command languages. Expert users use the system often
enough that they won’t forget obscure commands. Novice or casual users,
on the other hand, need to see things rather than have to remember obscure
details.

SideNote: Shortcut keys in laboratory tests, believe it or not, are always
slower than mouse-driven menu actions! Bruce Tognazzini in his book
Tog on Interface writes (p. 26): “We discovered, among other things, two
pertinent facts: Test subjects consistently report that keyboarding is faster
than mousing. The stopwatch consistently proves mousing is faster than
keyboarding.” While taking your hands off the keyboard does slow you
down, using the mouse is cognitively easier than remembering the right
shortcut key. There is a real time loss spent thinking up the shortcut key,
but people are completely unaware of the time loss—they literally have a
kind of “amnesia,” Toganazzini claims. Note, however, that these tests are
being conducted with users in novel applications. After years of use, some
keyboard shortcuts may become automatic and not requiring
remembering.

In general, computers are good at remembering things, but people are
not. Command languages are great if users are with them often enough to
remember the commands. For everyone else, provide icons, visible menus,
and dialogs that make it clear what’s to be done and when. User interface
designers talk about “making knowledge visible.” Make the state of the
program, the options for what to do next, and how to go about those
options visible in the interface.

You should make decisions about interaction mechanisms based on
what people expect. For example, if you’re building an on-line form that
takes the place of an existing paper-based form that people know and have
used for years, make the on-line form look like the paper-based form!
That way, people will know what’s expected and how to use it.

Where there are applicable guidelines for user interfaces on your
platform, you should follow them. IBM, Apple, and others have developed
notable guidelines for creating user interfaces. The reason to follow the
guidelines is not to create a standard, corporate look to the interfaces, but
to give people what they expect. If people expect dialog boxes to have the

7

This is a Chapter Title

OK and Cancel buttons in certain places, they will be confused if you
decide to put them elsewhere. Do what people expect.

In general, your choice of interaction mechanisms should be made to
avoid user error. You can give command languages to novices, but you
can also expect to have lots of user error and frustration. However, if you
map that command language to menus and dialog boxes, you’ll have less
error, but it may still be frustrating for the user if you basically provide all
the same functionality but in the menu bar. If you figure out the users’
tasks, then provide menus that correspond to users’ operations in those
tasks, and you bring up dialog boxes when necessary with options that
relate to the task, then you will probably have even less error and
frustration. Design your interface to reduce users’ errors.

One way to reduce users’ errors is to avoid modes. If you’ve ever
used the UNIX vi editor, you experience modes all the time. In vi, you are
either in “insert mode” where typing enters new characters into the file, or
you are in “command mode” where typing controls the cursor, deletion,
changes, and insertions. (There are actually some additional submodes
that we’ll skip.) For example, a “k” in command mode moves the cursor
up a line, a “d” deletes a character, and a “w” writes the file. Serious vi
users can tell you what damage typing their name in command mode will
do. A mode means that users have to figure out what’s valid when, and
recall which mode they’re currently in. Modes can lead to errors.

There’s a general rule for interface designers to put the knowledge in
the world. If there’s something that a user needs to know, make it visible
somewhere on the screen. If you have to have a mode, put a clearly visible
indicator that tells the user the current mode. When there are choices for
the user in the interface, use lists or menus to convey the choices, rather
than require the user to invent them. Making things visible also invites
exploration, since all the possibilities are available.

Finally, design expecting user errors. That’s why undo is such an
important user interface advancement. Everyone makes errors. Making
recovery from errors a graceful and omnipresent option is an important
goal for a good user interface.

4 A User Interface Design Process
For object-oriented design, we identified a process that made it more
likely that we would produce a good (reusable and maintainable) product.
For user interface design, there are again several kinds of process that
make the claim that following the process will lead to a better design. In
this section, we present two of these.

The first user interface design process is the waterfall method. The
waterfall method sets up a series of steps that, if executed properly, lead to

8

This is a Chapter Title

a good design with a single pass through the process. The waterfall
method typically has stages that look like this:

• Requirements specification: Elicit the user’s needs, analyze the task,
and define what the user interface must do.

• Architectural design: Figure out how the user interface provides the
necessary functions.

• Detailed design: Refine the overall architecture into detailed
descriptions that a programmer can code.

• Coding and unit testing: Build the user interface and test the low-
level components as they are developed.

• Integration and testing: Integrate the low-level components and test
them.

• Operation and maintenance: Actually use the system, and maintain
it over time.

The problem with the waterfall method is that it assumes an accurate
requirements specification. That may not be possible in all cases,
especially for novel technology. User interface researcher John Carroll of
Virginia Tech has pointed out how interfaces and systems impact users’
activities and goals. Early requirements specification based on users’
original goals may not be correct any more when they actually start using
the system. For many interfaces, this may not be a problem, such as when
replacing an existing system with a new one. But when technology is new,
Carroll’s point may be critical.

The second user interface design process that we’ll discuss is iterative
design and prototyping. The idea in this model is to plan on repeating the
process until a usability goal is reached. There are lots of variations on this
approach, some of which take the entire waterfall method as a subset of
the process. The general structure can be understood as this:

• Requirements gathering: Do an analysis of the users and their tasks,
similar to the first step above. One additional goal is deciding just how
usable the system needs to be. Can users perform certain tasks within
a certain amount of time? That’s a measurable usability goal.

• Build a prototype: The process of building a prototype could be all
the rest of the steps above.

• Evaluate the prototype: Trial the prototype. Actually test it with
users and see if the usability goal is met. If you meet the goal, you’re
done.

• Iterate: If the prototype doesn’t meet the goal, iterate on it. Maybe
you have to go back and fix the goal and requirements. Maybe you
have to rebuild the prototype from scratch. Maybe you only have to

9

This is a Chapter Title

tweak the prototype. Whatever level you decide to return to, you nave
to evaluate the candidate interface before calling it done.

5 Critiquing Our Clock Interface
Given all of the above, let’s consider Figure 2 and decide the quality of the
interface that we invented in the last chapter for the clock. We are all users
of clocks, so it’s fair to use ourselves as the users for this interface. What
are the tasks for which we use a clock? Your list will probably look
something like this, from the most common to the least common:

• Look at the time.

• Perhaps look at the date.

• For an alarm clock, set the alarm time.

• Set the time (after a power outage or when Daylight Savings starts or
stops).

Let’s evaluate the clock interface in terms of this list. Can we look at
the time? Yes, it’s fairly big right on top. But the busiest part of the
interface, the part that attracts our eye is the bottom. Those four buttons,
the most visible part of the clock with all their margins and labels, are
designed to enable us to set the time. That is, our interface draws attention
to the least common activity for the clock.

If you still have the clock code available, try running the interface
again. Try clicking on the buttons. Note that it’s difficult to tell when you
have clicked on the buttons: They don’t highlight, and there isn’t any other
audible or visible sign that the button has been clicked. This makes it very
easy to accidentally click the hour or minute change buttons and simply
not notice.

These observations suggest that the clock interface in Figure 2 is
optimized for user error! The interface draws the user’s attention toward
the task that is least common, and any use of the interface makes invisible
that the least common (and least often desired) activity—changing the
time— has even occurred. We could hardly have designed a worse
interface for actual use if we tried.

How could we have had a better interface for setting the time, so that
it needn’t have been so obvious and dangerous? You have probably seen
variations of interfaces like these suggestions.

• Maybe there’s a small button next to the clock with the label “Set”.
Clicking this button might bring up a dialog box for setting the time.
This can work for the computer clock, but if our model were used in a
wristwatch, no dialog box is possible.

• Maybe there are up and down buttons for advancing or retreating the
time. Holding them longer than a quick depress might advance or

10

This is a Chapter Title

retreat the time more quickly. This works well, and is used in many
alarm clocks, but it can take a while to set the time to a particular time
(after, say, a power outage, or when setting the time for recording the
VCR).

• Maybe there’s no way to set the time—the clock automatically sets the
time to some externally accessed source. But then there’s the problem
of getting the right external source, moving the clock, and fixing it
when you’re pointing at the wrong external source.

Exercises: Consider Your Interfaces
1. Look around at the clocks that you use in your life. Which ones have
interfaces that you can use easily? Why do you like them?

2. Consider a user interface that you use frequently, like your email
program or your Web browser. Write down a list of your most common
tasks. Now look at the user interface. Is it obvious (visible) how to
perform your tasks? What tasks does your interface seem to be optimized
for?

3. As a test of our Clock model, design an implementation of two of the
interfaces from the above list (or some other interfaces that you invent).
Do we have to change the Clock, or can we use the same model with
multiple interfaces?

6 Evaluation of User Interfaces
Given a set of users needs, you are probably a creative person who can
come up with a list of possible interfaces to meet these needs. Coming up
with such a list is a good idea. Expert designs actively consider many
alternatives in making design decisions. But how do you decide what to
implement? Or if you can implement several of them easily, how do you
decide which one to actually use in the final design?

Evaluating a user interface can be done before coding or at least
before involving the users with some methods, or after implementation
with other methods. Evaluating a user interface means trying to measure
or get some general sense of the interface’s usability by a user. The goals
of an evaluation may differ dramatically between different studies. Some
times you just want to know if a design worked. Other times, you may be
trying to gather concrete evidence that one approach

6.1 Evaluation Before User Involvement
 While it sounds strange, there’s a lot that can be learned about an

interface design even before coding it, simply by considering a careful
analysis. A heuristic evaluation or guidelines review is about carefully
analyzing an interface in terms of a standard set of questions or issues.

11

This is a Chapter Title

Evaluators review a user interface in terms of a set of standard heuristics
(like “Is knowledge visible?”) or standard user interface guidelines (e.g.,
“Is the Cancel button always in the right place?”). If you really need
numbers, you can even score points for each question or issue to arrive at
a quantitative result.

Some useful heuristics include:

• Can the user figure out their current state? Is everything that the user
needs to know about visible on the screen?

• Is the language on the screen (in the menus, on the buttons, in labels)
the language of the user, not the language of the programmer?

• Is help available?

• Are error messages adequate?

Another useful technique is a cognitive walkthrough. There are more
formal methods of cognitive walkthroughs, but an informal description is
to simply imagine being the user and walking through the interface to
perform a task. The goal is to figure out if the system makes sense.

To perform a cognitive walkthrough, you start out with a description
of the system (which may be the system itself, if it’s already running in
some form), a description of the users’ goals, and a careful process
description of the how to perform a normal, useful task. The evaluator
then walks through the process description asking herself:

• Does this make sense for this user? Given what we know about users
from their description, will they understand what it is that they are to
do next? For example, if we’re talking about a desktop publishing
system for ten year old students, we can’t expect them to understand
something about kerning unless we’ve given them lots of help first.

• Will the users be able to figure out what to do next? Again, the issue
here is about visual state.

• Will the users be able to understand the feedback that they get? If
everything goes well, will the user be able to tell? If something goes
wrong, will the user be able to tell what went wrong—and what to do
next?

6.2 Evaluation With Users
You want to get your interface as correct as you possibly can before
involving your users. Most users are not computer experts who are used to
software crashing. Even if your users are experts, they will be using your
software to complete some task that they care about. They want your
software to work. For these reasons, you use all the analysis methods that
you can before you involve users.

12

This is a Chapter Title

That said, you could not really know how your software will work
with users until you actually involve the users. Remember: “Know they
users for they are not you.” Users will almost certainly surprise you with
the way that they want to use the software, or the issues that you missed in
your analyses of the users and their tasks.

What you evaluate when you involve the users depends on two
factors: What you want to learn, and how much effort you want to spend.

• If you just want to learn if someone can use your software, ask a
typical user to come in and use the software while you observe her.

• If you want to show that your software is much better than a
competitors, you will want to involve enough users that you can claim
statistical significance (typically, 25 or more per group) in two
different groups—one using your software and one using your
competitor’s. You will want to ask each user to perform some set of
standard tasks, then measure the time to completion and the accuracy.

For the user interfaces that you might create for this book, we want
something toward the first example. You should be able to test your
designs with users, to find out if your design decisions were the right ones.
You want to know if your interfaces work, to convince yourself at least.
For that goal, a single user may be too little, but you probably do not need
a large study with careful analyses.

The first and perhaps most powerful technique to use in evaluation
with users is to simply watch them. Observation alone may not get you all
the information that you want. If you see a user do something that
generates an error message over and over again, you don’t want to just
observe—you want to know why the user is doing that.

There are a couple of ways of doing observations that provide more
data. One technique is the think aloud where you encourage your user to
say out loud what she is thinking as she is working through her task. You
expect to hear things like, “Okay, now I want to print the document.
Where is print, anyway? Usually, it’s in the File menu. There it is.” A
think aloud makes clear what it is that the user is doing and why she is
doing it. The disadvantage of a think aloud is that it sometimes changes
what the user is doing. It’s particularly hard for experts to verbalize why
they’re doing what they’re doing.

It’s useful to conduct a think aloud as explicitly occurring for the sake
of improving the software, as opposed to being perceived as some test for
the user. By involving the user in the evaluation process, the user feels
more comfortable, and may be more likely to explore the system and
provide useful insights.

You can’t always use observational studies. Sometimes you simply
have too many users involved, or can’t afford the cost of having someone

13

This is a Chapter Title

observing users, or you can’t get to where the users are. For example, it’s
hard to use observational studies when the software is for communications
that can occur day or night, even from the user’s bedroom. You can
request that your user use the software when you’re observing, but then
you’re really changing the user’s task to fit the evaluation, and your results
may not reflect actual use.

A second technique is a questionnaire, perhaps followed up by an
interview. In a questionnaire, you can ask the users their experiences and
opinions about the software. You can get the user to answer exactly the
questions that you have about the software.

However, there is no guarantee that you are asking the right questions.
You may be dying to know if the users like the new whizbang scroll bar
you invented, when the reality may be that they can’t use the system
because they can’t figure out how to open that window. You have to
phrase your questions carefully so that you get the answers that you really
want, but stay open to the possibility that the most important information
is the piece that you do not expect.

You should have at least a few open-ended questions, to gather the
information that you would not have expected. HCI researcher John
Stasko advocates two questions: What would you have me change the next
time that I revise the software? and What should I make sure that I leave
the same next time I revise the software? The problem with open-ended
questions is that they are more difficult to analyze and summarize.

Multiple choice and scalar questions (e.g., “on a scale of 1 to 5, where
1 is Strongly Agree and 5 is Strongly Disagree…”) are more useful for
analysis. You can use a spreadsheet to compute the average (and even the
variance) on each question. The best questionnaires explore an issue with
one more than one multiple choice or scalar question. For example, if you
want to know if the user could use the WhizBang ScrollBar, you might
want to ask them if they agree or disagree with the statements “I found the
WhizBang ScrollBar easy to use” and later in the questionnaire, “I was
able to control the WhizBang ScrollBar to get where I wanted.” If the
users agree with both of these, you can be fairly confident that you have a
useful widget. If the users disagree with both, or agree with only one of
the two, you know that the issue isn’t so clear cut.

You might want to ask for some volunteers to identify themselves as
potential interviewees. In an interview, you can ask the users your
favorite questions, but you can also follow up on questions you’re
concerned about. If the results came back from a survey mixed (e.g., users
love the software, but claim that they can’t always get what they want
done), then it’s useful to sit down with a user and find out what the
response is so confusing.

14

This is a Chapter Title

If you do not have the time or budget to conduct either an
observational or questionnaire, it’s still possible to get feedback from the
users. Provide an email address, or better yet, a mailing list or newsgroup
where users can provide feedback. Users’ questions to one another can
provide very useful insight about what’s confusing about your software.

6.3 Evaluating Groupware
Groupware is software meant to be used by groups of people, which is a
class of software that is particularly hard to evaluate. Consider, for
example, using a word processor that allows you to annotate versions of a
draft for comments back to the author. Now the author has all these
versions and annotations to deal with. Perhaps some of the comments use
the annotation mechanism well, and the author can integrate the comments
easily. But say that other users just INSERT THEIR COMMENTS IN
ALL CAPS. Did the software just fail the author or the annotator? Maybe
the software should help the author deal with all-caps annotations? Maybe
the software should have made it easier for the annotator to use the
supported annotation mechanism? (The answer might be Both, but that
software might get big and complicated.)

What’s more, groupware is more complicated for the design goals
associated with it. The goals of usability are still there (e.g., prevent users’
errors), but there is often a social agenda as well. For example, the
annotation mechanism in the word processor is implicitly encouraging
authors to collaborate with others who would comment on written work.
Other agendas might be to encourage more discussion of issues, or to
involve more people in a discussion. These are different goals than just
usability goals.

Measuring groupware goals is more complicated, too. How do you
measure if you achieved “more discussion of issues”? Observation would
not be effective, especially of any single user. Questionnaires might make
sense here. You might ask users if they feel that there is more discussion
with use of the software.

Another way of measuring groupware (or any interface) is to modify
the interface to record what the users do. Typically, this is done without
recording any identifying characteristics of the users, in order to protect
their privacy. By recording what users do, you can answer questions that
you might not otherwise be able to. For example, you can easily address
the question of how many people get involved in using a groupware
application. You may also be able to identify features that get used
frequently—or don’t get used at all. There is a challenge to using interface
recordings: You know nothing about the context of use. You don’t know if
a long pause indicates confusion about the interface, or a distracting phone
call. You don’t know why someone does something over-and-over again.

15

This is a Chapter Title

Interface recordings are a rich source of information, but are tricky to use
properly.

Exercises: Evaluating Interfaces
4. Again, pick an interface that you use. Develop a questionnaire about
the interface and its usability. Ask people you know (at least three) to
complete the questionnaire. Any surprises? Note differences among the
three—what would account the differences? Differences in individual
users, or differences in the tasks, or differences in the strategies for using
the software?

5. Ask someone you know to let them watch you use a piece of software
that you use. Does he use it differently? How? Are there features that he
uses that you do not use?

References
A recommended book that includes alot on user-interface evaluations is:

Dix, A., Finlay, J., Abowd, G., & Beale, R. (1998). Human-Computer
Interaction. (Second ed.). London: Prentice-Hall Europe.

Tog’s book is:

Tognazzini, B. (1992). Tog on Interface. Reading, MA: Addison-Wesley.

