
Chapter 4

Designing Object Systems
It’s easy to think about object-oriented programming as no big thing. It’s
got objects, classes, and inheritance, but a fast machine, a good hacker,
and a few cases of Jolt can make any programming language usable, right?
To a certain extent, that’s certainly true: You can just sit down and start
hacking Squeak like any other programming language.

The problem comes later. Can you still maintain your code? Can you
or anybody else reuse your classes in another application?

Just building with objects doesn’t insure that you get reusable,
maintainable code. Object-oriented programming makes it easier to
happen, but there are definitely good and bad object programs. Consider a
large program that has only one class and creates only one instance. Why
should that be any easier to maintain than the equivalent program in an
imperative programming language?

There is a process to follow that can lead to a good object-oriented
program, that is, one that is reusable and maintainable. No process or
methodology can guarantee a good result. In the end, it really comes down
to the programmer thinking through the problem and the program. What a
good process or methodology can offer is a set of activities that have
worked well for others.

The focus of this chapter is on how to do object-oriented analysis and
design. A single chapter can only provide an introduction. Many books
have been written on the subject of object-oriented analysis and design.
The approach of this chapter is to provide a minimal process. It’s
compatible with most of the methodologies and processes out there. It’s
complete enough that it does actually provide something useful. After
presenting the basic process, several examples are presented that apply the
process.

1 The Object-Oriented Design Process
There are a variety of definitions of a good object-oriented design process.
The basic stages of the one that we’ll use are:

1. Object-oriented analysis: In the analysis stage, your goal is to
understand the domain. What are the objects in this domain? What are
the services and attributes of each? In other words, what does each
object do and what do they know? How do the objects interact with
one another? Analysis is completely programming language
independent. The real world is not written in any programming
language! You don't need a programming language here, and trying to

2

Designing Object Systems

remain language independent at this stage will allow you to switch
languages easily later.

2. Object-oriented design: In the design stage, your goal is to figure out
the solution. You get down to nitty-gritty at this point. What instance
variables do you need? What methods do you need? There is some
contention in the field as to whether object-oriented design can be
language independent or not. Try to remain as independent as possible,
but at some point, the detailed design involves issues of how existing
classes are provided and structured. At that point, your design becomes
language dependent.

3. Object-oriented programming: Finally, you build the code. That's
what we've been talking about thus far in the book, and now we step
back and get to the earlier parts of the process.

A very important lesson is that this is not a linear process. You are
expected to go back and forth between analysis and design, between
design and programming, or even going all the way back to rethinking the
domain (in the analysis stage) while programming. There are software
engineers who argue that it is simply not possible to be able to define all
of the specifications before implementing. You can't know all the analysis
details before designing, and you can't know all of the designing details
before programming. You will go back and forth. That's not a bad
thing—it’s the way that even experts do it. Iterating on the design is
actually one of the signs of an expert designer.

1.1 Object-Oriented Analysis Stage
Throughout all of analysis, what you're really doing is figuring out what
you're doing. You may have a problem statement that you're starting from
in any project, but that problem statement is always ill-defined and
incomplete. You have to fill in the blanks even on the problem itself. What
is it that you really want to do? What is really the domain in which you're
working?

1.1.1 Brainstorming Candidate Classes
We will use two kinds of activities in our object-oriented analyses.

The first one is simply brainstorming. Try to write down all the objects
that you can think of that relate to the domain in which you are working.
The only rule is that everything you write down should be a noun, since
your focus is on the objects, not the tasks at this point.

A good object should have attributes and services. If two potential
objects differ only in their value for the attribute, then they will be
reflected as one kind of object (that is, a class when we go to implement
the objects). If Fred and George are going to be represented in our system,
but they only differ because of values of attributes like name and address,

3

Designing Object Systems

then they should be reflected as one kind of object. If, however, Fred is a
Fireman and George is a Policeman, and you’re building a model of an
emergency response system, then Fred and George do reflect different
services and perhaps different attributes, so they should be different
candidate objects. (But you should probably be thinking Fireman and
Policeman objects, not Fred and George.)

After you have brainstormed all the possible objects, start filtering
and sorting them.

• Separate those objects that have to do with the problem domain from
those having to do with the human interface. In most cases, the
interface objects are not part of understanding the domain. Most
objects in the real world don't have an extrinsic interface, like pencils
and soda cans. The interface is their physical structure or shape. Other
objects have interfaces that are important but don't relate to the basic
services of the object. Refrigerators have to have a handle on the door
to be able to get things out, but the handle doesn't interact with
keeping things cold. A radio does have a volume knob, but the radio
still has to tune a station and play regardless of what the volume is
currently set to. Focus on the core capabilities, not how some future
user will interact with those capabilities.

• Are some of the candidate objects really attributes of other candidate
objects? For example, a Name is rarely an object itself, though it’s
often an attribute of a class like Person.

• Are some of the candidate objects really subclasses of some other
candidate objects? This does not mean that you throw any of the
candidate objects out. But it does mean that you can start thinking
about structuring your hierarchy of potential objects early on.

• Are some of the candidate objects really instances of some other
object? Think about general objects here, even if there will only be
one instance of the given object when you finally design the sytem.

The final filter of your brainstormed candidate objects gets back to
what is it that you really want to do. Which of these objects are really ones
that you want to be dealing with? Some of your candidate objects really
belong to some other domain. Some of your candidate objects may be
related to your domain, but adding them in at the beginning is going to be
hard. Be realistic. For example, designing a cash register system can easily
extend into updating inventory, making entries in accounts receivable, and
immediately informing the head office of every sale. While a great system
might involve all those pieces, don’t try to do everything at once. What’s
the minimum objects that you need that lead to functionality that you
need?

4

Designing Object Systems

1.1.2 Class Responsibility Collaboration (CRC) Cards
The second activity in analysis is CRC cards as a way of defining the

responsibilities for each class that I have defined. CRC cards were
invented by Ward Cunningham and Kent Beck as a way of exploring how
classes interact with one another and provide services to one another while
performing various scenario tasks. CRC cards are really useful because
they're concrete (i.e., physical, manipulable) and so easily shared in
groups.

Typically, CRC cards are common 3x5 index cards (Figure 1). Across
the top, you write the class name. You make two columns, one for
Responsibilities of this class, and another for the Collaborators of this
class. That’s all there is to a CRC Card.

Figure 1: A Typical CRC Card

You are strongly encouraged to use real, physical, paper-based 3x5
index cards. Part of the fun of CRC cards is arranging them, fiddling with
them, and tossing them around. The physicality of the cards is really part
of the method. But if you insist on doing things virtually, a CRCcard
morph is available (by the author and Lex Spoon) for manipulating the
cards on-line. The source is available on the CD. Once filed-in, you can
create new ones by simply choosing New Morph from the World Menu,
then choosing CRCCard from the Morphic Windows submenu.

5

Designing Object Systems
CRC Card

Class:

Responsibilities: Collaborators:

Figure 2: A CRC Morph

Here's what you do with CRC cards.

• Write the name of each class that you plan to define at the top of its
own card.

• If you want, you can go ahead and start writing responsibilities for that
class on the card.

• Invent some scenarios—functions or sets of activities that go together
that you will want your set of objects to handle. If you were designing
an inventory system, your scenarios might include handling a delivery
and collecting materials for an invoice. If you were designing a class
registration system, your scenarios might include checking that a
student has the pre-requisites for a class and making sure that there
was room in a class.

• Now, play with your cards. Walk through each of your scenarios and
use the cards to identify who is responsible for what.

• What object will get the initial message that starts the scenario
process? Lay that card down first on a table or some other large
playing surface.

• What will the object be responsible for? If it's not written in the
responsibilities, write it down now.

• What other objects will that object need to work with? As you
encounter each object in the scenario, lay down its card, and iterate
through the process. What are its responsibilities? Who will it need
to collaborate with?

• As objects leave the scenario, pick the relevant card back up. Lay
down new cards as their objects enter the scenario.

The CRC cards can help you check that you've covered all your
responsibilities, that you understand the interactions between the objects,
and that the responsibilities make sense. They have other useful attributes,
too.

6

Designing Object Systems

• The cards form a useful record of your early design thoughts. In a big
project, capturing why someone made the design decisions they did
can be very useful.

• You can play with your cards in a group! Walking through scenarios
with CRC cards can be done with a whole development team or even
non-programming stakeholders (like, maybe the customer?) gathered
around the table. CRC cards are non-technical, so there is no language
or notation to learn. Instead, it's all about talking through the process
as objects, and talking with the developers and other stakeholders is a
great way of making sure that everyone understands the objectives.

1.2 Object-Oriented Design Stage
What the analysis stage hands over to the design stage is a set of objects
with their responsibilities and collaborators. These objects will most
probably become classes, where the actual objects in the system will be
instances of these classes. By making the object definitions into classes,
we can create as many of the object as we want and handle growth and
complexity in the system.

The outcome of the design stage is a description detailed enough to
code from. For this book, the result of the design will have two parts:

• A class diagram defining the attributes and services of each class and
formally identifying the connections between each class.

• A detailed description of what each service is supposed to do.

There are many different forms of the detailed description. Peter
Coad, an author and object-oriented design methodologist, likes an "I
am..." notation. "I am a Count. I know how to increment. To increment,
do..." Others like notations like Activity, Sequence, or Collaboration
Diagrams, which are notations in the new UML Standard. Still others use
flowcharts and pseudocode. In this book, we will forego yet another
notation to settle for just a natural language description.

There are just as many different class diagrams that one might use,
but there is now an accepted standard for this notation. There is an
emerging standard for class diagrams, and many other kinds of diagrams,
called UML for Universal Modeling Language. UML was invented by a
group of developers who had different methodologies for object-oriented
design and were interested in coming up with a single uniform process.
UML has been approved as a standard by the Object Management Group
(OMG).

UML is amazingly powerful: It has notations for various stages of
analysis (for example, there are notations for describing scenarios) as well
as design stages. In fact, a theorist recently showed that you can actually

7

Designing Object Systems

compile UML correctly to an object-oriented language now! In general
the different class diagrams are fairly similar

There are several tools out there for creating and manipulating UML
diagrams:

• The standard UML tool (literally, the one in which the standard is first
implemented) is Rational Rose. A demo version is available for free at
http://www.rational.com. While Rational Rose is a complete
implementation of UML, it’s also an enormous and complicated
program.

• Another popular UML tool is Together, by Object International
(http://www.oi.com) which includes Peter Coad. A version of
Together is also available for free from http://www.togethersoft.com.
The neat thing about Together is that it ties the software to the
diagrams: Updating one updates the other. Together does come in an
“Enterprise” version which can support multiple languages, but the
free version is specific to either Java or C++ (you get to choose which
you want). For creation of UML diagrams, either will work.

• Most of the diagrams in this chapter were produced using BOOST, a
tool especially designed for student object-oriented designers and
programmers by Noel Rappin. BOOST is written in Java. BOOST is
available on the accompanying CD, and is available for download at
http://www.cc.gatech.edu/gvu/edtech/BOOST/home.html. BOOST
actually supports CRC card analysis as well as class diagramming in
design.

We have already seen a UML class diagram in the previous chapter,
copied to Figure 3. Each class becomes a rectangle in this notation. The
class rectangle is split into three parts. The class name appears at the top.
The middle section lists the attributes of the class, and the bottom section
lists the services of the class.

The lines between the class boxes indicate relationships.
Relationships are about all the different ways that two objects can interact
with one another. How can one object be related to another? There are
three main kinds of relationships that we’ll talk about:

• The first is a generalization-specialization or IsA relationship. This
relationship indicates that one object (class) is a specialization of
another class, where the other class is a generalization of the first class.
The NamedBox IsA Box, which means that the NamedBox is a
specialization of the more general Box. This often gets implemented
later as a superclass-subclass relationship.

• The second is an association or HasA relationship. This relationship
indicates that one object has another and uses it. The Box HasA Pen
that it uses for drawing. A Car HasA Engine, a Student HasA

8

Designing Object Systems

Transcript, and a Person HasA Job. The UML standard points to
another similar relationship: Aggregation. Aggregation is part-whole.
The sum is only the collection of its parts. Aggregation is symbolized
with a diamond. Aggregation is not used often, so we won’t say more
about it now.

• The third is a dependency or TalksTo relationship. We don’t have any
examples in the Box Microworld, but it’s not hard to understand.
Sometimes, you have one object that sends a message to another, but it
isn’t a part-whole relationship. For example, your Computer TalksTo a
Monitor, though you might be more tempted to say that your
Computer HasA Monitor. A dependency relationship is sort of a
temporary HasA. It’s indicated in UML with a dashed line.

Figure 3: Example UML Class Diagram of Box Microworld

The UML class diagram depicts each of these relationships. The
triangle symbol indicates a generalization-specialization relationship. That
appears between NamedBox and Box to indicate that the NamedBox IsA
Box. The line indicates an association relationship between the Pen and the
Box.

There is an additional distinction that we will sometimes use in our
class diagrams in this book, that is, the distinction between concrete and
abstract classes. A concrete class is one that you will actually create
instances of. An abstract class is one that you create only to define
functionality that you will inherit in other classes. You never create
instances of an abstract class. In a UML class diagram, an abstract class
has the word “abstract” in the top pane of the class box on the diagram.

The UML class diagram definition includes lots of other distinctions
and features, which we will not use in this book. That is not to say that the
additional distinctions are not useful, but the philosophy here is to provide

9

Designing Object Systems

a minimal notation. Some of the useful features of the UML class diagram
definition that we will not be using include:

• Multiplicities: Knowing that two objects is related is fine, but it is even
more useful to know the numbers on the relationships. For example,
does a Box have one or more Pens? Can it have none? Can a Pen be
shared by more than one Box? The full definition allows for placing
numbers and ranges of numbers on the relationship line to indicate the
number of objects related.

• Constraints: There are frequently constraints on objects, e.g., an Order
has more than one ShippingRequest associated with it only if one of
the Items ordered is back ordered. UML allows for putting constraint
descriptions on a diagram in curly braces.

• Navigability: In an association or part-whole relationship, typically
one object knows the related object(s). When Object A knows Object
B, we say that the navigability of the objects is from A to B. An arrow
is drawn on the association line from A to B.

2 Your First Design: A Clock
Let's do our first design example: A Clock. We’ll design a good, old-
fashioned, not complicated clock. It’s a simple artifact that we are all users
of, so we’re all qualified to be valid analysts of it. The goal, however, is to
produce something reusable and maintainable so that we can develop more
things with it.

2.1 Doing it Quickly…and Wrong
Let’s do a quick design of the Clock—which we identify up front will

be wrong. Watch for it—where does the design go wrong?

First, we brainstorm the pieces of a clock. What goes into a clock?

• A face for the clock, to read the time from.

• Some kind of internal ticker that keeps the clock moving at a regular
interval.

• Probably some internal representation of hours, minutes, and seconds.
(Maybe lower level even than that?)

• Some of way of mapping between the internal ticker into seconds, and
then every 60 of those, into mintues, and then every 60 of those, into
hours.

• Some kind of knob for setting the clock.

Let's pause there and start filtering. We should filter out the face for
the clock and the knob for setting the time, for now. Both of those are
about the human-computer interface. Our clock must have a way of

10

Designing Object Systems

presenting the display-able time, and for setting the current time, but the
interface to those methods comes later. For now, let's ignore those pieces.

The rest of it, plus the pieces for displaying time and setting the time,
seem like a reasonable definition of a Clock class. We can identify several
instance variables

• For tracking time: seconds, minutes, and hours.

• For deciding how to display the time (e.g., 12 or 24 hours):
displayFormat.

Similarly, we can define several methods.

• For accessing the time variables: getSeconds, setSeconds,
getMinutes, setMinutes, getHours, setHours

• For ticking the clock: nextSecond.

• For getting the time in the appropriate display format: display (the
time), setFormat .

• Maybe something for getting the time in some kind of raw form, and
for setting the time: getTime, setTime.

2.2 Object-Oriented Analysis of the Clock
There. Did you see it? Did you notice when we started making design

process mistakes? That last example had several of them.

• When did we decide to do only a single class, Clock? Putting
everything in a single class is a bad idea for lots of reasons. It
centralizes responsibility and authority, which makes it hard to work
on in a group and which doesn't take advantage of object-oriented
programming. Further, it makes it hard to reuse. Think about a real
clock, say, a clock radio that wakes you up in the morning. Don't you
think that there are components of that clock (e.g., some chip, some
display) that are used in other devices, too? Shouldn't our clock also be
made up of reusable devices?

• We started out with data, listing all the instance variables, rather than
thinking about what our class should do, and even before that, what its
responsibilities are.

• We jumped to using words that are specific to given programming
languages. As long as possible we should remain language
independent. We should talk about attributes (that might get mapped to
instance variables in Smalltalk and Java, or member data in C++) and
services (that might get mapped to methods or member functions),
because these describe the objects, not the implementations.

11

Designing Object Systems

2.2.1 Brainstorming a Clock
We can use on some of those previous analyses, but we really do need to
start over. So let's brainstorm again what makes up a clock. But this time,
let's consider all the relevant objects.

• A Display which would be responsible for displaying the time,

• A Time for tracking hours, minutes, seconds and their relationships,

• A Ticker or SecondsTimer for providing constant time pulses,

• A Clock which would be responsible for tracking time and displaying
it on request.

Again, we'll pass on the Display object for now, as being in the realm
of human-computer interfaces. But the rest seem like a reasonable
assortment of pieces to begin with. Now we need to flesh out the
responsibilities of each candidate object and its collaborators. We use the
term “candidate” because we can still change our minds to reject some or
add some. CRC cards are good for this.

2.2.2 CRC Cards for a Clock
We need some scenarios to use in our CRC card analysis. Here are two
relevant ones that seem to capture the most critical pieces in our design.

• When the Ticker ticks out a time pulse, an internal counter must
increment, which must increment seconds, minutes, and hours
increments as needed.

• When a display is requested, the appropriate format for the display
must be determine, and the time must be gathered, then converted (as
necessary) to the appropriate format.

Let's play these out using CRC cards. First, we play out a new time
pulse.

• Control begins with the Ticker. We’ll call it a SecondsTicker
because we don't really care (here) about time at levels less than a
second. It needs to tell the clock that a second has gone by. We write
down this responsibility for the SecondsTicker, and we note that it
needs to collaborate with the Clock.

12

Designing Object Systems

Figure 4: The First CRC Card in the Ticker Scenario

• Now the Clock enters the picture. It needs to accept the pulse from the
SecondsTicker. It doesn't really have a collaborator for that—the
SecondsTicker is initiating the action. But the Clock also must
increment the representation of Time, so that is a collaborator.

Figure 5: Adding the Clock to the Ticker Scenario

• Now Time is informed that a second has gone by, so it must increment
its seconds representation, which may in turn trigger the
representations for minutes and hours. Time doesn't need any
collaborators to do this. It would return control to the Clock, which is
done, and then return control to the SecondsTimer, which is done.

13

Designing Object Systems

Figure 6: Last stage in CRC analysis of Ticker Scenario

We have now defined several roles and interactions between objects.
Let's walk through the next scenario and add to these: When a display is
requested.

• When a display is requested, the Clock needs to get the time, so Time
is a collaborator. Note that Clock’s other responsibilities and
collaborators remain. In the end, we must design Clock for all its
responsibilities.

Figure 7: Clock enters the Display Scenario

• Time must return the time in a format that the Clock can manipulate,
since it will be the Clock's responsibility to format it.

14

Designing Object Systems

Figure 8: Clock collaborates with Time in the Display Scenario

• Time is then done, and the Clock must format the time appropriately,
and then return it to the caller for display.

Figure 9: Clock completes the Display Scenario

2.3 Object-Oriented Design of a Clock
At this point, we have some CRC cards that tell us about our classes. We
now have a pretty good idea about what each object is going to be
responsible for, and what it's not responsible for (that is, what is passed on
to its collaborators). We can now talk about what each class knows and
can do.

• Clock: The Clock has to be able to set the displayFormat (and thus
know it, too) and return time in a given format. It needs to be able to
respond to a nextSecond, and pass that on to Time. Clearly, it needs
to know about Time.

Now, according to our scenarios and CRC Card analysis, the Clock
does not actually collaborate with the SecondsTimer, so the Clock

15

Designing Object Systems

doesn't really need to know about that object. But thinking about it again,
it’s clear that we did not include a significant scenario. (This is an
excellent example of having to step back to the analysis stage and re-think
things from there.) What happens when you start the clock? When you
start the clock, it's really the clock's job to start the timer, too. How will
the clock start the timer if it doesn't know about it? It becomes useful for
the Clock to know its Timer when you think about starting and stopping
the Clock. Starting and stopping the clock is really about asking the timer
to stop firing.

• SecondsTimer: The SecondsTimer has to know its clock, in order
to be able to tell it when a second has passed. The SecondsTimer
has to be able to turn on and off (start and stop). It is probably going to
use some kind of external process to generate the timing signals, so it
will need to know its process.

• Time: Time must be able to track the hours, minutes, and seconds. It
must be able to increment the number of seconds, and have that
addition flow into the other units, too. It really doesn't need to know
about any other objects.

We characterize the relationship between the SecondsTimer and
Time with the Clock as association relationships. The Timer and Time
are each used by the Clock. The Clock has them. Yes, they are distinct
entities, but it's also clear that Clock contains both a Timer and a
representation of Time.

Figure 10: UML Class Diagram for Clock Design

CautionaryNote: We don’t always put all the accessors in the class
diagram, at least, not at the object-oriented design (OOD) stage.
Obviously, all the accessors that you want have to actually be
implemented, but they can be left implicit at the OOD stage.

16

Designing Object Systems

Similarly, we do not always specify the attributes necessary to
implement whole-part relationships at the OOD level. It’s not incorrect to
do it, but it’s also okay to leave it to the programmer to figure out how to
implement the relationships specified in the model.

In this book, we’re the Analysts, Designers, and Programmers, so we
might as well specify everything fully.

All of this leads to the UML class diagram in Figure 10. Given the
UML diagram and the CRC analysis previously, it's possible for someone
to move into the language dependent aspects of design and actually
program our clock. That's our first complete object-oriented design.

Now, in this model, the Clock doesn't actually know what hour it is.
It can find out by asking its Time object. What if you decide that you
want the Clock to know what hour it is? What if the user interface that
you connect later needs to be able to ask the clock for the hour? What you
do then is to use a technique called delegation. The Clock can provide
service in response to the message hour, but it does it by simply asking its
Time to provide the hours. That's delegation—asking another object to
perform the requested service for the requested object.

SideNote: In a sense, inheritance is just a form of delegation, where the
delegation is implied whenever a message is sent to a subclass and the
subclass has not provided a method to override the superclasses’ method.
Delegation is really the key to polymorphism where one message can be
handled by any number of classes.

2.3.1 Considering An Alternative Design
An expert designer actually explores many other alternatives to any given
design. All the alternatives may not be written down, nor may even
appear in a CRC analysis or UML diagram. But expert designers at least
consider other ways of doing a design.

We should do the same. What are the other ways that we could do the
design? Different designs with basically the same functionality are often
referred to as different factorings of the solution, like when you move
variables around an equation without changing its value. Let’s brainstorm
a bit about different factorings of the Clock solution.

What about dropping the Clock object and just have the
SecondsTimer talk directly to Time? That removes a middleman,
which is often a good idea. However, that kind of a model is somewhat
less reusable and less reflective of the real world. Think ahead to when
we create variations of the Clock, like the AlarmClock. Do we subclass
Time to create AlarmTime? But isn’t an AlarmTime exactly the same
as regular Time? (While it may seem that AlarmTime is awfully fast
when you hit the snooze button, the reality is that it’s still about seconds,

17

Designing Object Systems

minutes, and hours.) And when we need Time in other contexts (e.g., as a
timestamp for when something happens), does it make sense for Time in
those other contexts to know how to respond to the next second pulse from
SecondsTimer? Also think ahead to creating a user interface on the
Clock. Does it make sense to have a user interface on Time? Maybe it
does. The question that you have to ask yourself is whether Time and
Clock are separate objects, or are really the same.

What about dropping the Time object and have the Clock know
about seconds, minutes, and hours? That’s the way that we originally tried
to do the design in Section 2.1. That could work, and there would be no
user interface problem. But Time is still a useful object all by itself, and
without the context of a Clock. Time is actually a reusable object. It’s
better to keep it separate and just use its services for the Clock.

SideNote: The question of when to make two separate objects or whether
to combine them into one comes up frequently for an object-oriented
designer. There are two questions you have to ask yourself. Do these two
objects have different behaviors? Do these two objects have different data
(attributes), or are they the same data with different values? If they don’t
have different behaviors and they only differ in values for the same
attributes, then combine them. But if they do differ in behavior or
attributes, separate them.

Exercises: Reviewing the Clock Design
1. Would this design change if we were talking about an analog clock (two
or three hands on a face with 12 numbers on it) rather than a digital one?
How would it change?

2. How would this design change if we wanted a millisecond resolution on
the clock instead of seconds resolution?

2.4 Object-oriented programming for the Clock
Now let's build in Squeak some of those objects we just designed. The
definition of the class Clock is pretty straightforward.

Object subclass: #Clock

instanceVariableNames: 'time timer displayFormat '

classVariableNames: ''

poolDictionaries: ''

category: 'ClockWorks'

As is the definition of the class, SecondsTimer.

18

Designing Object Systems

Object subclass: #SecondsTimer

instanceVariableNames: 'clock process '

classVariableNames: ''

poolDictionaries: ''

category: 'ClockWorks'

But in Smalltalk, we don't need to implement Time. Time is a pre-
defined class in Smalltalk, and it already does all the things that we need it
to do. We may need to change some of our method definitions as we go
along—that's part of the language dependent aspect of design. But the
responsibilities remain the same.

2.4.1 Implementing SecondsTimer
Let's talk about what goes on inside the Clock bottom-up, starting

with the SecondsTimer. The SecondsTimer needs some accessor
methods for manipulating its clock instance variable.

clock

^clock

clock: aClock

clock ←aClock.

But the really tricky part of the SecondsTimer is how it ticks off
seconds. Smalltalk already knows all about multi-processing. You can
have many different processes running at the same time in Smalltalk.
What we need the SecondsTimer to do is:

Create a process that sends the clock the message nextSecond after
each second.

Stop that process when requested.

This turns out to be pretty easy using Smalltalk's built-in classes. To
create a process, you simply send a block the message newProcess. It is
created in a frozen state. To get the process started (out of its frozen state
which it is in when it is created), we tell it to resume.

We need a process that will forever wait a second, send a message,
then go on. [true] whileTrue: []. is an effective infinite loop. There is
already a class named Delay that can create instances for different time
durations (as we saw in the last chapter when we made Joe the Box
animate well). When an instance is told to wait, it pauses its owner
process for that long.

19

Designing Object Systems

Processes have priorities, where a higher priority gets more CPU
attention than a lower priority. Our timing process needs to do very little,
and only once a second (which, in CPU time, is very little time at all). We
don't want our timing process to conflict with other processes, so we'll
make it a low priority. The class Processor defines a bunch of priority
levels. We'll take a low, background priority.

startTicking

process := [[true]

whileTrue:

[(Delay forSeconds: 1) wait.

clock nextSecond.]]

newProcess.

process priority: (Processor userBackgroundPriority).

process resume.

Stopping the process is even easier. Because we create a reference to
the process in the instance variable process, our SecondsTimer just
has to tell the process to stop, that is, terminate.

stopTicking

process terminate.

2.4.2 Implementing the Clock Class

The Clock does very little beside talking to its pieces. First it needs some
accessor methods (including one to delegate hour to time.)

hours

^time hours

time

^time

timer

^timer

Starting and stopping the Clock is a matter of setting up and tearing
down the timer. The first thing that you may notice is that start and stop
check to see if the timer instance variable is nil (empty), and if not, the
timer is asked to stop. And at the end of stop, the timer is set back to

20

Designing Object Systems

nil. What’s going on here is being very careful to stop the timer, even if
(by accident) start is executed twice in a row. Once the timer process is
started, it’s very hard to stop unless we explicitly terminate it. Executing
start a bunch of times in a row, without stopping any of the old timers
from ticking, will leave lots of old processes floating around, eating up
CPU time, and slowing down your system.

start

timer isNil ifFalse:

[timer stopTicking. "Stop one if already existing."].

timer ← SecondsTimer new.

timer clock: self.

timer startTicking.

stop

timer isNil ifFalse:

[timer stopTicking].

timer ← nil.

The rest of the Clock's methods are manipulating the time. Setting
the time turns out to be a pre-defined function in the class Time. The
method readFrom: can understand time in a variety of string formats,
such as '13:13' and '12:10 am'. All that we have to do is to create a
Stream on the input string. A Stream is a kind of object that can be
read or written efficiently one element (in our case, one character) at a
time. (We saw them briefly in Chapter 2 when we looked at how files are
manipulated in Squeak.) We need a ReadStream for reading the input
string, so we simply create a ReadStream on our string.

setTime: aString

time ← Time readFrom: (ReadStream on: aString).

nextSecond is a little more complicated, though it is also just a
single line. There is no predefined method to increment seconds in the
class Time. But there is an ability to add two times together. So,
nextSecond creates a Time instance of only a single second, then adds
it to our current time, and makes the result the new current time.

nextSecond

21

Designing Object Systems
time ← time addTime: (Time fromSeconds: 1)

Another responsibility of the Clock is dealing with displaying the
time in the appropriate format. First, we need an accessor method for the
displayFormat.
displayFormat: aType

"aType should be '24' or '12'"

displayFormat ← aType

The last method is the longest and most complicated: display. In
display, the Clock instance gets the hours, minutes, and seconds from
the Time instance (padding minutes and seconds with 0's). (Recall that
the comma is the string concatenation message in Smalltalk.) If the display
format is 24 hour, we drop through to the bottom and just output a string
of hours, minutes, and seconds. If it's a 12 hour display format, we have to
compute a 'pm' time versus an 'am' time versus a just-after-noon time
which is 'pm' but doesn't require that we subtract 12 from the time.

display

"Display the time in a given format"

| hours minutes seconds |

hours ← time hours printString.

minutes ← time minutes printString.

(minutes size < 2) ifTrue: [minutes ← '0',minutes]. "Must be two digits"

seconds ← time seconds printString.

(seconds size < 2) ifTrue: [seconds ← '0',seconds].

(displayFormat = '12')

ifTrue: [(hours asNumber 12)

ifTrue: [^((hours asNumber - 12) printString),':',minutes,':',

seconds,' pm'].

(hours asNumber < 12)

ifTrue: [^hours,':',minutes,':',seconds,' am']

ifFalse: ["Exactly 12 must be printed as pm"

^hours,':',minutes ,':',seconds,' pm']]

ifFalse: ["24-hour time is the default if no displayFormat is set"

^hours,':',minutes,':',seconds].

22

Designing Object Systems

That’s it! Try out your clock with some workspace code. First, set up
a clock and tell it to start.

cl := Clock new.
cl displayFormat: '12'.
cl setTime: '2:05 pm'.
cl start.

Try this a few times to convince yourself that the clock is running:
Transcript show: cl display. Finally, end the clock with cl stop.

3 Specializing Clock as an AlarmClock
The next design project is an AlarmClock. Our first impulse might

be to change the Clock class, but that would be a bad idea. Clocks are
useful in themselves, and there are clocks in the real world that are not
alarm clocks. There are mechanisms for modeling different kinds of things
in Smalltalk, or any object-oriented language. In general, it's better to
reuse and extend than to redesign and change.

3.1 OOA for Alarm Clock
An AlarmClock is clearly a kind of Clock, so we model it as a

specialization (later, when we program it, as a subclass). The Clock is the
generalization (superclass). We can use a CRC analysis to figure out
how the responsibilities of an AlarmClock differ from that of a Clock.

The main difference is in what happens when the second arrives at
which the alarm should go off.

• The AlarmClock will depend on its generalization to inherit the
standard nextSecond behavior which increments the time.

• The AlarmClock needs a new Time object, one that represents the
alarm time.

• When the alarm time arrives, the AlarmClock needs to execute the
alarm behavior.

23

Designing Object Systems

Figure 11: CRC Cards for Alarm Clock

3.2 OOD for Alarm Clock
We can now think more carefully about the definition of the class
AlarmClock. It needs to handle responsibility for nextSecond itself
(and within it, call upon Clock's nextSecond behavior). Clearly, it must
know an alarmTime, so the AlarmClock has its own Time (HasA
relationship). The AlarmClock needs to know what its alarm behavior is.
For now, we will define that alarm behavior as an attribute, an alarm, so
that we have flexibility later in what happens upon an alarm. We are
leaving open the option of defining an Alarm class later, though as we
will see, we will end up using the attribute for a language-dependent
feature.

24

Designing Object Systems

Figure 12: UML Class Diagram for Alarm Clock

The fact that we could use our Time class in more than one place
(i.e., as the representation of running time in the Clock and in the
representation of the alarm time in the AlarmClock) is an indication that
we are doing well with the design so far. In a sense, future reuse is a good
test of current designs. If we can reuse our objects in new situations, then
we did come up with definitions of flexible objects, like the ones that
inhabit the real world.

3.3 OOP for the AlarmClock
Before we actually implement the AlarmClock, let’s make the

language-dependent decision alluded to earlier. The AlarmClock must
do something when the alarm is to go off. In the design, we simply
inserted an alarm attributed. As we get language specific, we realize that
we can just define the alarm behavior as a block. As we program the
AlarmClock, we will define alarm as alarmBlock.

The AlarmClock class definition is then straightforward from the
class diagram.

Clock subclass: #AlarmClock

instanceVariableNames: 'alarmTime alarmBlock '

classVariableNames: ''

poolDictionaries: ''

25

Designing Object Systems

category: 'ClockWorks'

The AlarmClock has very few methods. There are obviously some
access methods.

alarmBlock: aBlock

alarmBlock ← aBlock.

alarmTime

^alarmTime

setAlarmTime: aString

alarmTime ← Time readFrom: (ReadStream on: aString).

The interesting part of AlarmClock is nextSecond. What it does
is:

4. It asks its superclass, Clock, to handle the basic nextSecond
responsibility.

5. Then it compares its alarmTime to the current time. If they are
equal, it's time to fire off the alarmBlock by taking its value. value
is the method that asks a block of code in Smalltalk to execute.

nextSecond

super nextSecond.

(time = alarmTime) ifTrue: [alarmBlock value].

Test the AlarmClock with some workspace code. When the alarm
goes off, Squeak beeps three times and displays "ALARM!" in the
Transcript.

cl ← AlarmClock new.
cl setTime: '2:04 pm'.
cl alarmBlock: [3 timesRepeat: [Smalltalk beep. Transcript show:
'ALARM!']].
cl setAlarmTime: '2:06 pm'.
cl start

After the alarm fires, the clock is still going. (Does your clock radio
stop after you turn off the alarm?) You need to explicitly stop it with a
DoIt on cl stop.

26

Designing Object Systems

Exercises: Building on the AlarmClock
3. How would you implement a snooze button?

4. Design and implement an alarm clock for two people who have to get
up at different times and want different kinds of alarms, e.g., different
radio stations for alarms, or one wants an beep (try Smalltalk beep)
instead of a radio wake-up call. How would you differentiate alarm
actions and alarm behaviors?

4 Generating: Programming in Groups
Your code for exercises might be growing large enough that you may want
to work with someone else. How do you work together? How do you
merge code? How do you keep track of your changes as opposed to
someone else’s? The issue gets even more complicated when your changes
appear in multiple classes. How do you file out all of your changes in
multiple classes to give to someone else?

Smalltalk programmers have always worked together in collaborative
groups, so the support for programming in groups in Squeak has its roots
in the earliest Smalltalk-80. The basic two ideas are projects and change
sets.

• A project stores the state of a complete Squeak desktop, including all
the windows (and in Morphic, all morphic objects), as well as the
currently active change set. When you change projects, whether by
entering or exiting, all the global state is saved into the project being
exited, and loaded from the one being entered. We have already seen a
project, including entering and leaving it. Whatever changes you make
to classes while within a project gets associated with the change set for
that project.

• A change set is a collection of changes to the system. Changes include
class changes, method changes, class removals, and method removals.
All of these changes impact the whole system, e.g., you can’t have one
version of a method in one change set and another version of the same
method in another change set. But you can fileOut all of the changes
of one change set at once. You can also copy changes between change
sets, compare change sets, and generally manage change sets.

4.1 Creating Projects and Change Sets
You have already seen how to create a project, enter it, and exit it. You
can do this from any project. Projects can be nested within projects, and
you can jump from any project to another.

27

Designing Object Systems

Change sets go along with projects, but they don’t have to. You can
create change sets, and declare that new changes go to the new change set,
from any project whatsoever.

There are two tools available in the Open… menu for managing
changes: simple change sorter and dual change sorter. The simple change
sorter (Figure 13) lets you see the list of change sets in the current system
(upper left hand corner), the list of classes in the selected change set
(upper right), the list of methods changed in the selected class (center
pane), and the actual code in the lower pane. From any change sorter, you
can use the Yellow Button Menu on the change set pane to create a new
change set, fileout all the changes of a change set (so that someone else
can load in all the things you’ve changed in a given project), or even
choose to make changes go to a different change set. Even within a single
project, you can choose to make changes go to a different change set.

Figure 13: Simple Change Sorter

The dual change sorter (Figure 14) allows you to look at two change
sets at once. With two change sets open at once, you can copy changes
from one to the other, submerge one change set into another, or even
subtract all the changes from one change set that are also in the other
change set. By manipulating change sets, you can find any particular
changes that you need to include in what you give to your collaborators.

28

Designing Object Systems

Figure 14: Dual Change Sorter

Change set files are a little different than the “.st” files from filing out
classes or categories. When a change set is filed out, the filename ends
with “.cs” rather than the “.st” from filing out the class or method. A
changeset fileOut contains the name of the change set and the date and
time of the file out. The time stamp makes it easier to track versions of
changes.

It’s also possible to attach a preamble or postscript to a change set.
The preamble appears at the top of a change set, and a postscript appears
at the end. In a preamble, you can put in a comment describing the change
set, or even provide some set-up code, e.g., check that a prerequisite class
is defined in the image before the change set is loaded in. In a postscript,
you can clean up things, or perhaps start some of the newly loaded code.

4.2 Working with Someone Else’s Changes
When someone else gives you a change set, you could simply file it in via
the file list. But you might want to check it first, to see how it differs from
what you already have (e.g., beware of someone overwriting your
methods!) and even just to see what it includes.

From the file list, you have several options from the Yellow Button
Menu when a code file (.cs or .st) is selected:

• You can File into a new change set. This option puts all of the new
changes into one change set that you can easily inspect using a change
sorter.

• You can Browse changes (Figure 15). This option puts up a window
where you can inspect each separate change that the change set is
going to do to your system if you file it in. You can choose to file in
any one or any set of the changes in the change browser. In addition,

29

Designing Object Systems

you can use the Yellow Button Menu to select just those that are
already in your system (conflicts), or those that are not. (Notice that
you can see the initials of the author, as well as the time and date, for
each change.)

Figure 15: Browsing changes from a change set file

• Perhaps the most powerful option is the ability to Browse code (Figure
16). The Package Browser that opens allows you to walk through the
code that’s in the selected file just as if it were already in your System
Browser. As you select each method, it tells you if the method is
already in your image or not. If it is, strikeouts and color coding
shows you how the new method differs from the method that’s
currently in your system. As from the changes browser, the package
browser lets you file in any particular methods or classes that you
choose.

Figure 16: Browsing Code from a Code File

30

Designing Object Systems

4.3 Recovering from Someone Else’s Changes
You have now filed in someone else’s code, but missed one critical
method, so now all of your code is broken. (Or maybe, you just made a
really bad change, and realize that you hadn’t filed out the previous,
almost-working version.) You really want to turn back the clock to an
earlier version of the method.

Figure 17: Recent versions of a method

Fortunately, the changes file really does capture all changes in the
system, which includes all those previous versions of a given method.
From any method list (e.g., an implementors list, a System Browser,
wherever), you have a Yellow Button Menu item Versions… The recent
versions browser shows you all the versions of the same method in your
changes file (Figure 17). Selecting an older version shows you with color
and strikeouts how the selected version differs from your current version.
You can copy anything you want out of these old versions and paste them
into your browser to re-accept them.

If you open up the Preferences (under the Help menu item in the
Desktop or World menus), you can choose to useAnnotationPanes. In
several of the browsers (especially Senders and Implementors), when
annotation panes are selected, you are shown a pane between the list of
methods and the code that gives useful information about the selected
method. This information typically includes the initials of the author, the
timestamp, the number of implementors of this method, the number of
senders, and which change set the method came from (Figure 18). What
gets displayed in the annotation pane is actually configurable with an easy
drag-and-drop interface, which is brought up when you DoIt on
Preferences editAnnotations,

31

Designing Object Systems

Figure 18: Implementors browser with Annotation Pane

5 Reusing the Clock and AlarmClock
The AlarmClock was a reasonable test of the Clock’s reusability, but if
the design is good, it should be flexible when the larger system is reused,
too. In this section, we push harder on the design of the AlarmClock (and
Clock) by reusing them in yet more designs.

5.1 Reuse in a VCR
An AlarmClock is itself useful, but we can test this larger design

(more than just the single class Time) by seeing if we can reuse it in even
larger, more complicated projects. Let's start by talking through use of this
AlarmClock structure in a VCR. A VCR requires something like an
alarm clock to start and stop the recorder.

Brainstorming probably would lead to deciding that new objects are
necessary: a VCR object and a VCRRecorder. We can then use CRC
cards to work out the responsibilities of each of these objects (Figure 19).

A VCR has a recorder, and a current channel, and the VCR knows
how to do things like start the record process, fast forward, rewind, change
the channel, and so on. If we were out to do a really detailed model of a
VCR, we might want to think about motors that are controlled by fast
forward and rewind, and perhaps even sensors and a tape carriage for
handling the recording and playing process. But since our focus is on the
starting and stopping of the recorder, we'll leave that open for now.

32

Designing Object Systems

The VCRRecorder is where the action is. It is the VCRRecorder
that tells the VCR when to record on what channel and when to stop.
Here's the CRC analysis.

• The VCRRecorder has an alarm clock for starting the recording
session. When it goes off, it tells the VCR to go to the appropriate
channel, and start recording.

• The VCR knows how to change channels and record.

• The VCRRecorder also has an alarm clock for ending the recording
session. When it goes off, it tells the VCR to stop.

Figure 19: CRC cards for VCR and VCRRecorder Objects

This isn't a very sophisticated extension of an alarm clock. But it is
interesting for several reasons. First, it's showing the power of combining
objects in object systems. Look how many levels we now have in our
system (Figure 20). Clocks have Timers and Time. AlarmClocks
extend Clocks and have an additional alarmTime. Now VCRs have
VCRRecorders which themselves have two AlarmClocks—and each
of those has everything that an AlarmClock has: a Timer (inherited from
Clock) and two Time objects. Our model is actually getting fairly
complicated, but the complexity is quite manageable. When you're dealing
with the AlarmClock, you can quite forget that the SecondsTimer is
there at all. When you're dealing with the VCRRecorder, you just create
a couple of AlarmClocks, and tell them their alarm times and what to do
when the alarms go off.

33

Designing Object Systems

Figure 20: Class diagram for VCR design

When you ask object-oriented programmers what is powerful about
object-oriented programming, they will often talk about inheritance. Being
able to create a new subclass that can do so much as soon as you create it,
because of inheritance, is clearly very powerful. But the real workhorse of
object-oriented programming is the ability to combine objects: Connecting
objects together, having bunches of objects lying underneath easy-to-use
surface objects, having collections of heterogeneous objects. That's where
the real power of objects to hide complexity lies.

Exercises: Continuing the VCR Example
5. If you look at the aggregation in our VCR, you'll notice some
strangeness. There are actually two SecondsTimers in our model, each
telling a different AlarmClock to tick. In a real VCR, these two would
probably be combined to create only a single timing circuit. How would
you change our diagram for a single timer? Would there still be two
clocks? Or would it have a new kind of AlarmClock that keeps track of
multiple alarms?

5.2 Reuse in an AppointmentBook
If we can reuse our AlarmClock in one situation, that's good. If we can
reuse it in two or more, that's better. Our last reuse example of the
AlarmClock is an AppointmentBook. An AppointmentBook is a
good one because we can actually build and play with it. Unless your

34

Designing Object Systems

computer happens to have a VCR motor and tape carriage assembly with
sensors, you probably can't actually build and use the VCR example.

What are the new objects in an AppointmentBook? We can
brainstorm a bit here:

• Maybe an AppointmentBook to track appointments.

• A Calendar to associate appointments with their days.

• Which suggests an Appointment which is responsible for alerting the
user to a given appointment at the right time.

• Maybe the AlarmClock for triggering the Appointment.

• An AppointmentQueue so as to sort the appointments and set up the
AlarmClock for the next appointment.

Now, we filter. We want to do this as simply as possible, so that we
can set up a demonstration. But we want it to be flexible to extend later.
Let’s choose to eliminate the Calendar and the AlarmQueue. Instead,
we'll associate an AlarmClock with each Appointment. It's somewhat
inefficient, but it's an inefficiency that can be corrected later. It's simple,
and allows us to get started quickly. We'll give the AppointmentBook
the responsibility to alert all the Appointments for a given day, which
could be triggered by a Calendar object if we ever added one.

A complete class diagram appears in Figure 21.

• Appointments know their alarm and the date on which they should
be active. They don't need to know their time—that's delegated to the
alarm.

• AppointmentBook knows all the appointments, and it is responsible
for turning them on for a given day (and off at the end of the day), and
to make an appointment for a given day.

CautionaryNote: We don’t always want to model the whole. If the parts
define all of the whole, and we define all the parts, we don’t also need to
model the whole. In this case, the AppointmentBook does more than just
collect all the Appointments, so we define it separately.

Here is the class diagram that represents this. Again, the level of
aggregation says something interesting about the ability to scale up object
systems.

35

Designing Object Systems

Figure 21: Class diagram for Appointments

Exercises: On the Appointment Book Analysis
6. We skipped the CRC Card analysis in the above Appointment Book
example. Fill it in.

7. The AppointmentBook shouldn't be responsible for creating well-
formed appointments. Instead, the request to make an appointment should
be delegated to the Appointment class. How would you model that?

8. Now that we've done it the short way, figure out how to add a
Calendar and an AlarmQueue that uses only a single AlarmClock.

5.2.1 Programming the Appointment Book
We start out by implementing the two new classes that we need.

Object subclass: #AppointmentBook
instanceVariableNames: 'appointments '
classVariableNames: ''
poolDictionaries: ''
category: 'ClockWorks'

Object subclass: #Appointment
instanceVariableNames: 'alarm description date '
classVariableNames: ''
poolDictionaries: ''
category: 'ClockWorks'

36

Designing Object Systems

5.2.2 Implementing the AppointmentBook with Collections

The AppointmentBook has a couple of techniques in it that we
haven't seen previously, so we'll discuss that one first. To begin with, an
AppointmentBook must be explicitly initialized. The initialize method
sets up the OrderedCollection of appointments.

An OrderedCollection can be thought of as an array that grows to
fit as many elements are placed in it. Smalltalk has many such collections
classes (e.g., SortedCollections, Arrays, Sets, Bags). Each has
its own characteristics, and the implementation of each is optimized for
the kind of characteristics that it supports. For example, Sets are
unordered and allow no duplications, while Bags are unordered and
allow duplications.

In fact, it's not obvious that an OrderedCollection is the right
choice for storing the collection of Appointments in an
AppointmentBook. However, OrderedCollections provide an
amazingly wide variety of services, so they are often a good choice for
early implementation and prototyping. Later, a more optimal collection
can be chosen later.

initialize

appointments ← OrderedCollection new.

We provide an accessor for the appointments, particularly for user
interfaces that may want to display all of the appointments.

appointments

^appointments

When we are making an appointment via the AppointmentBook,
we create an Appointment instance, fill it with the appropriate values,
then add it to the appointments OrderedCollection. You will also
notice here a reference to the Date class. Smalltalk's Date class
understands how to manipulate dates and answer questions about dates
(e.g., "What day of the week was July 4, 1776?" (Date readFrom:
(ReadStream on: 'July 4, 1776')) weekday = Thursday). We use
it for the date instance variable in Appointment, and we use it's ability
to parse dates to create the appointment. Again, we must hand it a
Stream, not a String, so we create one on the fly.

makeAppointment: aDescription for: aDate at: aTime

37

Designing Object Systems
| a |

a ← Appointment new.

a description: aDescription.

a date: (Date readFrom: (ReadStream on: aDate)).

a alarm: aTime.

appointments add: a.

Note that our AlarmClock doesn't know anything about dates, only
about time. It doesn't know how to go off on a given day and time, only at
a given time. So turning on the alarm when the appointment is created
doesn't work. We can only set the alarm on a given day. That's what
onToday does.

onToday

(appointments select:

[:each | each date = Date today])

do: [:each | each on].

This is a fairly complex piece of code, so let's go slowly through it in
its major pieces.

(appointments select: [:each | each date = Date today]) : All
Collections in Smalltalk understand methods that allow one to
iterate over a Collection and do something to or with each element
in the Collection. select: is a method that evaluates a block for each
element in the collection, then returns a new collection with just those
elements that returned true for the block, as seen in Chapter 2. In this
piece of code, we are selecting all of those appointments whose date is
today.

do: [:each | each on] : In this piece, we are walking over each of the
appointments that are due today, and telling them that they are on.

Recall that each appointment has its own AlarmClock, which keeps
ticking even after the appointment is done. We need a way to turn them all
off again.

allOff

appointments do:

[:appointment | appointment alarm stop].

Exercises: Improving the Appointment Book
9. We turned only the appointments on that were due on the given day, but
we turned all alarms on the appointments off. That's both inefficent (we

38

Designing Object Systems

did the selection in the first case, but processed all appointments in the
second), and non-orthogonal (we tell the appointment on, but we tell the
alarm stop). Which way do you like better? Why? Fix the wrong method.

5.2.3 Implementing the Appointments

The Appointments keep track of the information for each individual
appointment in an appointment book. The most important responsibility
for an appointment is to track the time, date, and description of each
appointment.

date

^date

date: aDate

"Set date of appointment."

date ← aDate

description

^description

description: aDescription

description := aDescription.

Setting the alarm time is a little tricky. Instead of just recording the
time, we use the instance variable alarm to actually hold the instance
AlarmClock, and delegate tracking the alarm time to it.

alarm: someTime

alarm ← AlarmClock new.

alarm setAlarmTime: someTime.

We provide an accessor method to access the AlarmClock instance.

alarm

^alarm

Finally, the method for turning on the alarms is called simply on. It
creates an alarmBlock for the alarm, sets the AlarmClock's current
time to the real time, and starts the AlarmClock.

on

39

Designing Object Systems
"The appointment is today, so turn on alarm."

alarm alarmBlock: [3 timesRepeat: [Smalltalk beep.].

Transcript show: 'Appointment: ',description.

alarm stop.].

alarm setTime: (Time now printString).

alarm start.

We can test the AppointmentBook now.

b ← AppointmentBook new initialize.
b makeAppointment: 'Testing!' for: '9/27/98' at: '2:34 pm'.
b onToday.

When you're declaring the end of the day, be sure to use b allOff or
you’ll be leaving seconds timers running around.

Exercises: Extending the Appointment Book

10. Write a time method that returns the time of the appointment. (Hint:
Delegation!)

11. Why don't we set the alarmBlock at the time that the alarm time is
set in the Appointment instance?

6 Implementing Models
The mapping from a class diagram to a program is fairly straightforward,
but there are some decisions to be made. Probably the easiest part of the
mapping is from attributes and services to instance variables and methods,
but even there, some variations exist. For example, if you were modeling a
class of students, you might want to have an attribute called
studentCount to track the number of students in the class. But when
you actually implement this, you may just want to define a method
studentCount that returns the size of the collection storing the students.
That way, you don't have to maintain the count during each addition and
deletion, and the count is still fast and up-to-date.

The mapping of classes in the class diagram to actual classes is pretty
clean, until you need interactions between objects of the same type. For
example, if you had a LinkedListNode that pointed to itself, mapping
that in a traditional class diagram is a little confusing. The problem is that
the class diagram describes classes, and doesn't do a great job of
describing individual objects. You need to keep this distinction in mind
when creating the mapping. In UML, sequence and collaboration diagrams
do a better job of showing how individual objects relate to one another.

40

Designing Object Systems

Generalization-Specialization relations (IsA) always get mapped as
superclass-subclass relations, but association (HasA) relations can be
mapped in a variety of ways.

• The fact that a part (say, tires) is part of a whole (say, a car) doesn't
actually tell you anything about who needs to know about what. Does
the tire need to send messages to the car? If so, it needs some kind of
instance variable that refers to the whole, and it needs to be initialized
to set that reference to its car. Does the car need to send messages to
its tires? Then, the car needs to be able to reference the tire objects.
But you don't always need to go both ways. In UML, this issue is
called navigability.

• If there is a many-to-one relationship, then you will probably need
some kind of collection to manage the relationship. If a course is
composed of students, the course object will probably need a
collection of students. In our examples above, the appointment book
had a collection of appointments that were composed within it. But it
isn't always true that you need a collection if you have more than one
part composed within a whole. For example, consider our alarm clock,
which had two instances of Time within it: One for the current time
(inherited from Clock), and one for the alarm time. In this case, two
separate instance variables modeled the relationship better than a
collection of Time objects.

There are lots of other variations for object-oriented design, and lots
of other mappings from a design to a programming language. Any good
book on UML which show a large number of other kinds of relationships
between objects, as well as other aspects of design to consider. For
example, we haven't considered the best way to involve stakeholders (the
people who care about the result of a design) in a design process, nor
modeling roles, that is, the different kinds of users. The issues covered in
this chapter are a good start on design, but there’s a lot more to learn about
doing good design.

7 Rules of Thumb for Good Object-Oriented Designs
The process described in this chapter can lead to good object-oriented
design, where a good design is reusable and maintainable. Through the
chapter, we’ve identified several key aspects of a good design:

• It's general and based on real world artifacts. That makes the design
more reusable.

• It defines objects as nouns, not functions and not managers.

• The relationship between a subclass and a superclass is always an IsA
relationship.

41

Designing Object Systems

• It avoids computer science terms like "linked list." The real world
doesn't have linked lists in it. Implementations of models of the real
world do.

But this is only a partial list. There are many other characteristics of
good designs. In this book, we can only touch on a handful of them
through the examples and exercises.

There are lots of rules of thumb, or heuristics, that you can use to
measure the quality of your design. They don’t always work—sometimes,
there are very good reasons for breaking a standard “rule” of design. But
they work in most cases and can help in measuring up your design.

Here are several useful object-oriented design rules of thumb:

• Almost no good design consists of a single class. The real world isn’t
made from a single object. A program that has a single class with
many services and attributes looks more like a procedural program
jammed into an object-oriented language.

• In a good design, information access is enough . Objects don't need
information that they can't get to. Objects can get to the information
they need: Either directly, or by asking one of the objects that they can
access directly.

• Responsibility, control, and communication are distributed in good
designs. Not one object does everything.

• There should be little or no redundancy: Code should appear only
once. Use inheritance or delegation so that you do not have to replicate
code.

• There is a right level of detail for any model, and it depends on what
you need. Yes, everything in the world is made up of molecules, but
most problems don't require you to model each and every molecule.
Create models for the things that you need.

References
An excellent and practical introduction to UML (many more diagrams
than what we covered here) is UML Distilled: Applying the Standard
Object Modeling Language by Martin Fowler and Kendall Scott (Addison
Wesley, 1997).

Perhaps the best book on design in Smalltalk is Chamond Liu’s Smalltalk,
Objects, and Design (Prentice-Hall, 1996). The form of Smalltalk that he
focuses on is IBM Smalltalk, but the core language is the same, and the
discussion of design issues is very nice.

One of the critical themes in object-oriented design today is design
patterns, identifying common kinds of objects and relationships between
these objects. The book that started this theme is Design Patterns:

42

Designing Object Systems

Elements of Reusable Object-Oriented Software by Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides (Addison Wesley, 1995). A
Smalltalk-specific companion to the book has been written by Sherman R.
Alpert, Kyle Brown, and Bobby Woolf, The Design Patterns Smalltalk
Companion (Addison Wesley, 1998). While design patterns is a pretty
abstract idea for beginners, it’s an important concept for more advanced
study of object-oriented design.

