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Abstract. We present a first-order probabilistic logic for reasoning about
the uncertainty of events modeled by sets of probability measures. In our
language, we have formulas that essentially say that according to agent
Ag, for all x, formula α(x) holds with the lower probability at least 1

3
.

Also, the language is powerful enough to allow reasoning about higher
order upper and lower probabilities. We provide corresponding Kripke-
style semantics, axiomatize the logic and prove that the axiomatization
is sound and strongly complete (every satisfiable set of formulas is con-
sistent).

Keywords: probabilistic logic, uncertainty, axiomatization, strong com-
pleteness

1 Introduction

Reasoning with uncertainty has gained an important role in computer science,
artificial intelligence and cognitive science. These applications require the devel-
opment of formal models which could capture reasoning through probability [3,
4, 6–9, 11, 13, 17, 19].

We investigate a probabilistic logic approach, considering the situation when
there is also uncertainty about probabilities. In this case, the uncertainty is often
described using the two boundaries, called upper probability and lower probability
[14, 15]. Those probabilities are previously formalized in logics developed in [12,
20, 21]. Halpern and Pucella [12] give the following example: a bag contains 100
marbles, 30 of them are red and the remaining 70 are either blue or yellow, but
we do not know their exact proportion. Thus, we can assign exact probability
0.3 to the event that a randomly picked ball from the bag is red, while for
each possible probability p for picking a blue ball, we know that the remaining
probability for yellow one is 0.7-p. For the set of possible probability measures
obtained in that way, we can assign a pair of functions, the upper and lower
probability measure, that assign the supremum and the infimum the probability
of an event according to the probability measures in the set.
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We use the papers [12, 20, 21] as a starting point and generalize them in two
ways:

– We want to reason not only about lower and upper probabilities an agent
assigns to a certain event, but also about her uncertain belief about other
agent’s imprecise probabilities. Thus, we introduce separate lower and up-
per probability operators for different agents, and we allow nesting of the
operators, similarly as it has been done in [6], in the case of simple proba-
bilities4. Suppose that an agent a is planning a visit to the city C based on
the weather reports from several sources, and she decides to take an action
if probability of rain is at most 1

10 , according to all reports she considers.
Since she wishes to go together with b, she should be sure with probability
at least 9

10 that b (who might consult different weather reports) has the same
conclusion about possibility of rain. In our language, it can be formalized as

Ua≤ 1
10
Rain(C) ∧ La≥ 9

10
(U b≤ 1

10
Rain(C)).

– We extend both [12, 20, 21] and [6] by allowing reasoning about events ex-
pressible in a first-order language. The papers [12, 20] deal with propositinal
reasoning, while [21] introduces a logic whose syntax allows only Boolean
combinations of formulas in which lower and upper probability operators
are applied to first order sentences. On the other hand, here we use the most
general approach, allowing arbitrary combination of probability operators
and quantifiers, so we can express the statement like “according to the agent
a, the lower probability of rain in all cities is at least 1

3” (La≥ 1
3

∀xRain(x)), but

also “There exists a city in which it will surely not rain” ((∃x)Ua=0Rain(x)).

Formally, if the uncertainty about probabilities is modeled by a set of prob-
ability measures P defined on a given algebra H, then the lower probability
measure P? and the upper probability measure P ? are defined by P?(X) =
inf{µ(X) | µ ∈ P} and P ?(X) = sup{µ(X) | µ ∈ P}, for every X ∈ H. Those
two functions are related by the formula P?(X) = 1− P ?(Xc).

In this paper, we logically formalize such situations using a generalization
of Kripke models – for each agent, every world is equipped with a probabilistic
space which consists of the accessible worlds, algebra of subsets, and a set of
measures. We denote our logic by Llu.

We propose a sound and strongly complete axiomatization of the logic. Since
we use different completion technique than the one used in [6, 12], we did not
have to incorporate the arithmetical operations in the language. Instead, we use
unary operators for upper and lower probability, following [20]. Since, like the
other real-valued probabilistic logics, Llu is not compact, any finitary axiomatic
system would be incomplete [22]. In order to achieve completeness, we use two
infinitary rules of inference, with countably many premises and one conclusion.

4 For a discussion on higher-order probabilities we refer the reader to [10].
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2 The logic Llu – syntax and semantics

Let S = Q ∩ [0, 1], V ar = {x, y, z, . . .} be a denumerable set of variables and let
Σ = {a, b, . . .} be a finite, non-empty set of agents. The language of the logic
Llu consists of:

– the elements of set V ar,
– classical propositional connectives ¬ and ∧,
– universal quantifier ∀,
– for every integer k ≥ 0, denumerably many function symbols F k0 , F

k
1 , . . . of

arity k,
– for every integer k ≥ 0, denumerably many relation symbols P k0 , P

k
1 , . . . of

arity k,
– the list of upper probability operators Ua≥s, for every s ∈ S,
– the list of lower probability operators La≥s, for every s ∈ S,
– comma, parentheses.

Functions of arity 0 will be called constants.
Note that we use conjunction and negation as primitive connectives, while ∨,→,
↔ and ∃ are introduced in the usual way. The notions of a term, atomic formula,
bound and free variables, sentence and a term free for a variable in formula, can
be defined as usual.

Definition 1 (Formula) The set ForLlu
of formulas is the smallest set con-

taining atomic formulas and that is closed under following formation rules: if
α, β are formulas, then La≥sα, Ua≥sα, ¬α, α∧β, (∀x)α are formulas as well. The
formulas from ForLlu

will be denoted by α, β, . . .

We use the following abbreviations to introduce other types of inequalities:

– Ua<sα is ¬Ua≥sα, Ua≤sα is La≥1−s¬α, Ua=sα is Ua≤sα ∧ Ua≥sα, Ua>sα is ¬Ua≤sα,
– La<sα is ¬La≥sα, La≤sα is Ua≥1−s¬α, La=sα is La≤sα ∧ La≥sα, La>sα is ¬La≤sα.

We also denote α ∨ ¬α by >, and α ∧ ¬α by ⊥.
The semantics for the logic Llu is based on the possible-world approach.

Definition 2 (Llu-structure) An Llu-structure is a tupleM = 〈W,D, I, LUP 〉,
where:

– W is a nonempty set of worlds,
– D associates a non-empty domain D(w) with every world w ∈W ,
– I associates an interpretation I(w) with every world w ∈W such that:

- I(w)(F ki ) : D(w)k → D(w), for all i and k,
- I(w)(P ki ) ⊆ D(w)k, for all i and k,

– LUP assigns, to every w ∈ W and every agent a ∈ Σ, a space, such that
LUP (a,w) = 〈W (a,w), H(a,w), P (a,w)〉, where:
• ∅ 6= W (a,w) ⊆W ,
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• H(a,w) is an algebra of subsets of W (a,w), i.e. a set of subsets of
W (a,w) such that:
- W (a,w) ∈ H(a,w),
- if A,B ∈ H(a,w), then W (a,w) \A ∈ H(a,w) and A ∪B ∈ H(a,w),

• P (a,w) is a set of finitely additive probability measures defined on H(a,w),
i.e. for every µ(a,w) ∈ P (a,w), µ(a,w) : H(a,w) −→ [0, 1] and the fol-
lowing conditions hold:
- µ(a,w)(W (a,w)) = 1,
- µ(a,w)(A ∪B) = µ(a,w)(A) + µ(a,w)(B), whenever A ∩B = ∅.

Definition 3 (Variable valuation) LetM = 〈W,D, I, LUP 〉 be an Llu-structure.
A variable valuation υ assigns to every variable some element of the correspond-
ing domain to every world w ∈W , i.e. υ(w)(x) ∈ D(w). For υ, w ∈W and d ∈
D(w) we define υw[d/x] is a valuation same as υ except that υw[d/x](w)(x) = d.

Definition 4 Let M = 〈W,D, I, LUP 〉 be an Llu-structure and t a term. The
value of a term t, denoted by I(w)(t)υ is defined as follows:

– if t is a variable x, then I(w)(x)υ = υ(w)(x), and
– if t = Fmi (t1, . . . , tm), then

I(w)(t)υ = I(w)(Fmi )(I(w)(t1)υ, . . . , I(w)(tm)υ).

Now we define satisfiability of the formulas from ForLlu
in the worlds of

Llu-structures.

Definition 5 The truth value of a formula α in a world w ∈ W of a model
M = 〈W,D, I, LUP 〉 for a given valuation υ, denoted by I(w)(α)υ is defined as
follows:

– if α = Pmi (t1, . . . , tm), then I(w)(α)υ = true if 〈I(w)(t1)υ, . . . , I(w)(tm)υ〉 ∈
I(w)(Pmi ), otherwise I(w)(α)υ = false,

– if α = ¬β, then I(w)(α)υ = true if I(w)(β)υ = false, otherwise I(w)(α)υ =
false,

– if α = β∧γ, then I(w)(α)υ = true if I(w)(β)υ = true and I(w)(γ)υ = true,
– if α = Ua≥sβ, then I(w)(α)υ = true if P ?(w, a){u ∈ W (w, a) | I(u)(β)υ =
true} ≥ s, otherwise I(w)(α)υ = false,

– if α = La≥sβ, then I(w)(α)υ = true if P?(w, a){u ∈ W (w, a) | I(u)(β)υ =
true} ≥ s, otherwise I(w)(α)υ = false,

– if α = (∀x)β, then I(w)(α)υ = true if for every d ∈ D(w), I(w)(β)υw[d/x] =
true, otherwise I(w)(α)υ = false.

Recall that P?(w, a){u ∈ W (w, a) | I(u)(β)υ = true} = inf{µ(w, a)({u ∈
W (w, a) | I(u)(β)υ = true}) | µ(w, a) ∈ P (w, a)}, and P ?(w, a){u ∈ W (w, a) |
I(u)(β)υ = true} = sup{µ(w, a)({u ∈ W (w, a) | I(u)(β)υ = true}) | µ(w, a) ∈
P (w, a)}.
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Definition 6 A formula α holds in a world w from a modelM = 〈W,D, I, LUP 〉,
denoted by M, w |= α, if for every valuation υ, I(w)(α)υ = true. If d ∈ D(w),
we will use M, w |= α(d) to denote that I(w)(α(x))υw[d/x] = true, for every
valuation υ.

A sentence α is satisfiable if there is a world w in an Llu-modelM such that
M, w |= α. A sentence α is valid if it is satisfied in every world in every Llu-
modelM. A set of sentences T is satisfiable if there is a world w in an Llu-model
M such that M, w |= α for every α ∈ T .

We will consider a class of Llu models that satisfy:

– all the worlds from a model have the same domain, i.e., for all v, w ∈ W ,
D(v) = D(w),

– for every sentence α, for every agent a ∈ Σ and every world w from a model
M, the set {u ∈W (w, a) | I(u)(α)υ = true} of all worlds from W (w, a) that
satisfy α is measurable,

– the terms are rigid, i.e., for every model their meanings are the same in all
the worlds.

We will use the notation [α]aw for the set {u ∈ W (w, a) | I(u)(α)υ = true},
and also LluMeas

to denote the class of all fixed domain measurable models with
rigid terms.

The following example shows that Compactness theorem does not hold for
the logic Llu, i.e. we can construct a set T such that every finite subset of a set
T is satisfiable, but T itself is not.

Example 1 Consider the set of formulas

T = {¬Ua=0α} ∪ {Ua< 1
n
α | n is a positive integer}.

It is clear that every finite subset of T is LluMeas
-satisfiable, but the set T is not.

3 The axiomatization AxLlu

In this section we introduce an axiomatic system for the logic Llu. That system
will be denoted by AxLlu

. In order to axiomatize upper and lower probabilities,
we need to completely characterize them with a small number of properties.
There are many complete characterizations in the literature, and the earliest
appears to be by Lorentz [16]. We use the characterization result by Anger and
Lembcke [1] . It uses the notion of (n, k)-cover.

Definition 7 ((n, k)-cover) A set A is said to be covered n times by a multiset
{{A1, . . . , Am}} of sets if every element of A appears in at least n sets from
A1, . . . , Am, i.e., for all x ∈ A, there exists i1, . . . , in in {1, . . . ,m} such that for
all j ≤ n, x ∈ Aij . An (n, k)-cover of (A,W ) is a multiset {{A1, . . . , Am}} that
covers W k times and covers A n+ k times.



6 Savić, Doder, Ognjanović

Theorem 1 ([1]) Let W be a set, H an algebra of subsets of W , and f a func-
tion f : H −→ [0, 1]. There exists a set P of probability measures such that
f = P ? iff f satisfies the following three properties:

(1) f(∅) = 0,

(2) f(W ) = 1,

(3) for all natural numbers m,n, k and all subsets A1, . . . , Am in H, if the
multiset {{A1, . . . , Am}} is an (n, k)-cover of (A,W ), then k + nf(A) ≤∑m
i=1 f(Ai).

This theorem is also used in the Halpern and Pucella’s paper on the logical
formalization of upper and lower probabilities [12].

Axiom schemes

(1) all instances of the classical propositional tautologies

(2) (∀x)(α→ β)→ (α→ (∀x)β), where the variable x does not occur free in α

(3) (∀x)α(x) → α(t), where α(t) is obtained by substitution of all free occur-
rences of x in the first-order formula α(x) by the term t which is free for x
in α(x)

(4) Ua≤1α ∧ La≤1α
(5) Ua≤rα→ Ua<sα, s > r

(6) Ua<sα→ Ua≤sα

(7) (Ua≤r1α1 ∧ . . . ∧ Ua≤rmαm)→ Ua≤rα, if α→
∨
J⊆{1,...,m},|J|=k+n

∧
j∈J αj and∨

J⊆{1,...,m},|J|=k
∧
j∈J αj are tautologies, where r =

∑m
i=1 ri−k
n , n 6= 0

(8) ¬(Ua≤r1α1 ∧ . . . ∧ Ua≤rmαm), if
∨
J⊆{1,...,m},|J|=k

∧
j∈J αj is a tautology and∑m

i=1 ri < k

(9) La=1(α→ β)→ (Ua≥sα→ Ua≥sβ)

Inference Rules

(1) From α and α→ β infer β

(2) From α infer (∀x)α

(3) From α infer La≥1α

(4) From the set of premises

{α→ Ua≥s− 1
k
β | k ≥ 1

s
}

infer α→ Ua≥sβ

(5) From the set of premises

{α→ La≥s− 1
k
β | k ≥ 1

s
}

infer α→ La≥sβ.
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The axioms 7 and 8 together capture the condition 3) from the Theorem 1.
Indeed, note that {{A1, . . . , Am}} covers a set A n times iff

A ⊆
⋃

J⊆{1,...,m},|J|=n

⋂
j∈J

Aj .

Hence, the condition that a formula α →
∨
J⊆{1,...,m},|J|=k+n

∧
j∈J αj is a tau-

tology gives us that, for every a ∈ Σ and w ∈W , [α]aw is covered n+k times by a
multiset {{[α1]aw, . . . , [αm]aw}}, while the condition that

∨
J⊆{1,...,m},|J|=k

∧
j∈J αj

is a tautology ensures that, for every a ∈ Σ and w ∈W , W (w, a) = [>]aw is cov-
ered k times by a multiset {{[α1]aw, . . . , [αm]aw}}.

Rule 4 and Rule 5 are infinitary rules of inference and intuitively says that
if upper/lower probability is arbitrary close to a rational number s then it is at
least s.

Definition 8 (Inference relation)

- ` α (α is a theorem) iff there is an at most denumerable sequence of for-
mulas α1, α2, . . . , α, such that every αi is an axiom or it is derived from the
preceding formulas by an inference rule;

- T ` α (α is derivable from T) if there is an at most denumerable sequence
of formulas α1, α2, . . . , α, such that every αi is an axiom or a formula from
the set T , or it is derived from the preceding formulas by an inference rule,
with the exception that Inference Rule 3 can be applied only to the theorems;

- T is consistent if there is at least one formula α ∈ ForLlu
that is not de-

ducible from T , otherwise T is inconsistent;
- T is maximally consistent set if it is consistent and for every α ∈ ForLlu

,
either α ∈ T or ¬α ∈ T ;

- T is deductively closed if for every α ∈ ForLlu
, if T ` α, then α ∈ T ;

- T is saturated if it is maximally consistent and satisfies:
if ¬(∀x)α(x) ∈ T , then for some term t, ¬α(t) ∈ T .

Note that T is inconsistent iff T ` ⊥. Also, it is easy to check that every maxi-
mally consistent set is deductively closed.

It is straightforward to prove that our axiomatic system is sound with respect
to the class of LluMeas

-models.

4 Completeness

Deduction theorem holds for AxLlu
: if T is a set of formulas and α a sentence,

then T ∪{α} ` β iff T ` α→ β. This theorem can be proved using the facts that
our infinitary inference rules have implicative form, and that the application of
Rule 3 is restricted to theorems only.

Now, we show how to extend an arbitrary consistent set of formulas T to
a saturated set of formulas T ?. In the end the canonical model MCan is con-
structed and after that, it is proved that for every world w and every formula
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α, α ∈ w iff w |= α, so the proof of the completeness theorem is an easy conse-
quence.

Theorem 2 (Lindenbaum’s theorem) Every consistent set of formulas can
be extended to a saturated set.

Sketch of the proof. Consider a consistent set T and let α0, α1, . . . be an
enumeration of all formulas from ForLlu

. A sequence of sets Ti, i = 0, 1, 2, . . . is
defined as follows:

(1) T0 = T ,
(2) for every i ≥ 0,

(a) if Ti ∪ {αi} is consistent, then Ti+1 = Ti ∪ {αi}, otherwise
(b) if αi is of the form β → Ua≥sα, then Ti+1 = Ti ∪ {¬αi, β → ¬Ua≥s− 1

n

α},
for some positive integer n, so that Ti+1 is consistent, otherwise

(c) if αi is of the form β → La≥sα, then Ti+1 = Ti ∪ {¬αi, β → ¬La≥s− 1
n

α},
for some positive integer n, so that Ti+1 is consistent, otherwise

(d) if the set Ti+1 is obtained by adding a formula of the form ¬(∀x)β(x)
to the set Ti, then for some c ∈ C (C is a countably infinite set of new
constant symbols), ¬β(c) is also added to Ti+1, so that Ti+1 is consistent,
otherwise

(e) Ti+1 = Ti ∪ {¬αi}.
(3) T ? =

⋃∞
i=0 Ti.

Obviously, the set T0 is consistent. Natural numbers (n), from the steps 2(b)
and 2(c) of the construction exist (this is a direct consequence of the Deduction
Theorem), and each Ti is consistent. The maximality of T ? (either α ∈ T or
¬α ∈ T ) is ensured by the steps (1) and (2) of the above construction. It is clear
that T ? does not contain all the formulas because for a formula α ∈ ForLlu

, the
set T ? does not contain both α = αi and ¬α = αj , since the set Tmax{i,j}+1 is
consistent.

It only remains to prove that T ? is deductively closed. Let α ∈ ForLlu
. We

will prove by the induction on the length of the inference that if T ? ` α, then
α ∈ T ?. Consider the infinitary Rule 5. Let αi = β → La≥sγ be obtained from the

set of premises {αki = β → La≥skγ | sk ∈ S}. Using the induction hypothesis, we

conclude that αki ∈ T ?, for every k. If αi /∈ T ?, by step (2)(c) of the construction,
there must be some l and j such that ¬(β → La≥sγ), β → ¬La≥s− 1

l

γ ∈ Tj . Hence,

we have that for some j′ ≥ j: β∧¬La≥sγ ∈ Tj′ ; β ∈ Tj′ ; ¬La≥s− 1
l

γ, La≥s− 1
l

γ ∈ Tj′ .
Therefore, we have that T ? is deductively closed set, and T ? does not contain

all the formulas, so it is consistent.
The step (2)(d) of the construction guarantees that T ? is saturated. �

Now we define a canonical model, using the saturated sets of formulas.

Definition 9 (Canonical model) A canonical modelMCan = 〈W,D, I, LUP 〉
is a tuple such that:
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– W is the set of all saturated sets of formulas,
– D is the set of all variable-free terms,
– for every w ∈W , I(w) is an interpretation such that:
• for every function symbol Fmi , I(w)(Fmi ) : Dm → D such that for all

variable-free terms t1, . . . , tm, I(w)(Fmi ) : 〈t1, . . . , tm〉 7→ Fmi (t1, . . . , tm),
• for every relation symbol Pmi , I(w)(Pmi ) = {〈t1, . . . , tm〉 | Pmi (t1, . . . , tm) ∈
w}, for all variable-free terms t1, . . . , tm,

– for a ∈ Σ and w ∈W , LUP (w, a) = 〈W (w, a), H(w, a), P (w, a)〉 is defined:
- W (w, a) = W ,
- H(w, a) = {{u | u ∈W (w, a), α ∈ u} | α ∈ ForLlu

},
- P (w, a) is any set of probability measures such that P ?(w, a)({u | u ∈
W (w, a), α ∈ u}) = sup{s | Ua≥sα ∈ w}.

Lemma 1 For every formula α and every w ∈W , α ∈ w iff w |= α.

Theorem 3 (Strong completeness) . Every consistent set of formulas T is
LluMeas

− satisfiable.

Sketch of the proof. Let T be a consistent set of formulas and let MCan =
〈W,D, I, LUP 〉 be a canonical model. It can be shown that MCan is a well
defined measurable structure. Furthermore, from Lemma 1we obtain that for
every formula α, and every w ∈W , w |= α iff α ∈ w. Finally, using Theorem 2, we
can extend T to a saturated set T ∗, and since T ∗ ∈W , we obtainMCan, T

∗ |= T .
�

5 Conclusion

In this paper we present the proof-theoretical analysis of a logic which allows
making statements about upper and lower probabilities of formulas according to
some agent. We combine the approaches from [12, 20] and [6] and generalize them
to an expressive modal language Llu which extend first-order logic with the unary
operators Ua≥r and La≥r, where r ranges over the unit interval of rational numbers.
The corresponding semantics LluMeas

consists of the measurable Kripke models
with a set of finitely additive probability measures attached to each possible
world. For a given world of a model, every probability form the corresponding set
of probabilities is defined on the same algebra of a chosen sets of worlds. We prove
that the proposed axiomatic system AxLlu

is strongly complete with respect to
the class of LluMeas

-models. Since the logic is not compact, the axiomatization
contains infinitary rules of inference.

Finally, upper and lower probabilities are just one approach in development
of imprecise probability models [2, 5, 18, 23, 24]. In the future work, we also wish
to logically formalize different approaches to imprecise probabilities.
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